精英家教网 > 初中数学 > 题目详情

【题目】已知(x-y)2=49,xy=2,则x2+y2的值为( )

A. 53 B. 45 C. 47 D. 51

【答案】A

【解析】因为(xy)2= x2-2xyy2=49,所以x2y2=49+2xy=49+2×2=53,故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据下列条件,分别求出对应的二次函数的关系式.

1)已知二次函数的图象经过点A0-1),B10),C-12);

2)已知抛物线的顶点为(1-3),且与y轴交于点(01);

3)已知抛物线与x轴交于点M-30),(50),且与y轴交于点(0,-3);

4)已知抛物线的顶点为(3-2),且与x轴两交点间的距离为4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )

A. 最高分 B. 平均数 C. 中位数 D. 方差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个两位质数,它的个位数字与十位数字之差的经验值等于5,这样的两位质数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.

解:猜想∠BPD+∠B+∠D=360°

理由:过点P作EF∥AB,

∴∠B+∠BPE=180°(两直线平行,同旁内角互补)

∵AB∥CD,EF∥AB,

∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)

∴∠EPD+∠D=180°(两直线平行,同旁内角互补)

∴∠B+∠BPE+∠EPD+∠D=360°

∴∠B+∠BPD+∠D=360°

(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.

(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是( )
A.3a+2b=5ab
B.5y﹣3y=2
C.7a+a=7a2
D.6xy2﹣3y2x=3xy2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:

体积(m3/件)

质量(吨/件)

A型商品

0.8

0.5

B型商品

2

1

(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件?

(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:

①按车收费:每辆车运输货物到目的地收费600元;

②按吨收费:每吨货物运输到目的地收费200元.

要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数a,b满足a2-b2=10,(a+b)3·(a-b)3的值是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:x-25=_____.

查看答案和解析>>

同步练习册答案