分析 根据△ABC中,AB=15cm,BC=20cm,AC=25cm,可得△ABC的周长和面积,利用最长边可求得两三角形的相似比,再根据周长比等于相似比,可求得△A′B′C′的周长,根据相似三角形的面积的比等于相似比的平方,可得△A′B′C′的面积.
解答 解:∵△ABC中,AB=15cm,BC=20cm,AC=25cm,
∴△ABC的周长=60cm,AB2+BC2=AC2,
∴△ABC是直角三角形,
∴△ABC的面积=$\frac{1}{2}$×15×20=150cm2,
∵△ABC∽△A′B′C′,且△ABC中最长边为25cm,△A′B′C′的最长边长为50cm,
∴相似比为$\frac{1}{2}$,
∴$\frac{{C}_{△ABC}}{{C}_{△A'B'C'}}$=$\frac{1}{2}$,即$\frac{60}{{C}_{△A'B'C'}}$=$\frac{1}{2}$,
解得C△A′B′C′=120cm,
∵$\frac{{S}_{△ABC}}{{S}_{△A'B'C'}}$=($\frac{1}{2}$)2,
∴$\frac{120}{{S}_{△A'B'C'}}$=$\frac{1}{4}$,
解得S△A′B′C′=480cm2.
点评 本题主要考查相似三角形的性质,掌握相似三角形的周长比等于相似比,相似三角形的面积的比等于相似比的平方是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com