精英家教网 > 初中数学 > 题目详情
如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为
 
度.
精英家教网
分析:根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BDC的度数.
解答:解:根据旋转的性质△ABC≌△EDB,BC=BD,
则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°-∠DBE=180°-30°=150°,
∠BDC=
1
2
(180°-∠CBD)=15°.
故答案为15°.
点评:根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转求出即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,精英家教网使得点A与CB的延长线上的点E重合.
(1)三角尺旋转了多少度
 
度;
(2)连接CD,试判断△CBD的形状;
 

(3)求∠BDC的度数.
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

33、如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合,已知BC=6.
(1)三角尺旋转了多少度?连接CD,试判断△BCD的形状;
(2)求AD的长;
(3)连接CE,试猜想线段AC与CE的大小关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合.
(1)三角尺旋转了多少度?
(2)连接CD,试判断△ACD的形状,对结论加以证明;
(3)连接CE,试猜想线段AC与CE的大小关系,并予以证明,求出CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合,已知BC=8.
(1)三角尺旋转了多少度?连结CD,试判断△BCD的形状;
(2)求AD的长;
(3)边结CE,试猜想线段AC与CE的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案