精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴上,点C在y轴上,且AC=BC,过A、B、C三点的抛物线的解析式为______.
根据题意得:C、B、A点的坐标为(0,4)、(x1,4)、(x2,0)
将(x1,4)代入y=ax2-5ax+4得x1=5
又因为AC=BC,所以x22+16=25,得x2=-3
将(-3,0)代入y=ax2-5ax+4得a=-
1
6

∴过A、B、C三点的抛物线的解析式为y=-
1
6
x2+
5
6
x+4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+mx+n经过点A(1,0),B(6,0).
(1)求抛物线的解析式;
(2)抛物线与y轴交于点D,求△ABD的面积;
(3)当y<0,直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-
1
2
x2+bx+c的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知如图:△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,则FC(AC+EC)=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的解析式和对称轴;
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为
15
8
时,求直线AN的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AB=a,BC=b,
b
3
≤a≤3b
,AE=AH=CF=CG,则四边形EFGH的面积的最大值是(  )
A.
1
16
(a+b)2
B.
1
8
(a+b)2
C.
1
4
(a+b)2
D.
1
2
(a+b)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨的销售价x(万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.
(1)求出销售量y(吨)与每吨的销售价x(万元)之间的函数关系式;
(2)若销售利润为w(万元),请写出w与x之间的函数关系式,并求出销售价为每吨2万元时的销售利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m.试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
小明在解答下图所示的问题时,写下了如下解答过程:

①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立如图所示的平面直角坐标系;
②设抛物线的解析式为y=ax2
③则B点的坐标为(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
问:(1)小明的解答过程是否正确,若不正确,请你加以改正;
(2)喷出的水流能否浇灌到地面上距离A点3.5m的庄稼上(图上庄稼在A点的右侧,庄稼的高度不计),若不能请你在上图所示的坐标系中将喷头B上下或左右平移,问至少要平移多少距离才能浇灌到地面的庄稼,并求出此时喷出的抛物线形水流的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=-
2
3
x2+bx+c经过A(0,-4)、B(x1,0)、C(x2,0)三点,且x2-x1=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案