精英家教网 > 初中数学 > 题目详情
精英家教网如图,在正方形ABCD,F为DC的中点,E为BC上一点,且EC=
14
BC.
(1)求证:AF⊥EF;
(2)若△AEF的面积为5,求正方形ABCD的边长.
分析:(1)可利用勾股定理求解,两直角边的平方和等于斜边的平方.
(2)边长的计算,有△AEF的面积,以及三角形的边与正方形的关系,运用勾股定理可求出边长.
解答:证明:(1):∵四边形ABCD是正方形,
∴∠C=∠D=90°,
∵F是CD中点,
∴DF=CF=
1
2
CD=
1
2
AD,
∵CE=
1
4
BC=
1
4
CD,
∴CE:DF=CF:AD=1:2,
∴Rt△CEF∽Rt△DFA,
∴∠FAD=∠EFC,
∵∠DAF+∠DFA=90°,
∴∠EFC+∠DFA=90°,
∴∠EFA=180°-90°=90°.
∴AF⊥EF;

(2)设CE=x,则DF=CF=2x,AD=4x,
S△AEF=
1
2
 ×2 
5
x× 
5
x
=5,
解之得,x=1
所以正方形的边长为4x=4.
点评:熟练掌握正方形的性质,能够运用性质解决一些简单的计算问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案