分析 结合题中规定符号$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$的意义,求出$|\begin{array}{l}{{m}^{2}}&{m-3}\\{1-2m}&{m-2}\end{array}|$=m3-7m+3,然后根据m2-2m-3=0,求出m的值并代入求解即可.
解答 解:由题意可得,
$|\begin{array}{l}{{m}^{2}}&{m-3}\\{1-2m}&{m-2}\end{array}|$
=m2(m-2)-(m-3)(1-2m)
=m3-7m+3,
∵m2-2m-3=0,
解得:x1=-1,x2=3,
将x1=-1,x2=3代入m2-2m-3=0,等式两边成立,
故x1=-1,x2=3都是方程的解,
当x=-1时,m3-7m+3=-1+7+3=9,
当x=3时,m3-7m+3=27-21+3=9.
所以当m2-2m-3=0时,$|\begin{array}{l}{{m}^{2}}&{m-3}\\{1-2m}&{m-2}\end{array}|$的值为9.
故答案为:9.
点评 本题考查了整式的混合运算-化简求值,解答本题的关键在于结合题中规定符号$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$的意义,求出$|\begin{array}{l}{{m}^{2}}&{m-3}\\{1-2m}&{m-2}\end{array}|$=m3-7m+3,然后根据m2-2m-3=0,求出m的值并代入求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x-2017<y-2017 | B. | x+1>y+1 | C. | -3x>-3y | D. | -$\frac{x}{3}$>-$\frac{y}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 100° | B. | 80° | C. | 70° | D. | 60° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com