精英家教网 > 初中数学 > 题目详情
(2012•湖州)已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.
(1)求证:四边形ABED为矩形;
(2)若AB=4,
AD
BC
=
3
4
,求CF的长.
分析:(1)根据AD∥BC和AB切圆D于A,求出DAB=∠ADE=∠DEB=90°,即可推出结论;
(2)根据矩形的性质求出AB=DE=4,根据垂径定理求出CF=2CE,设AD=3k,则BC=4k,BE=3k,EC=k,DC=AD=3k,在△DEC中由勾股定理得出一个关于k的方程,求出k的值,即可求出答案.
解答:(1)证明:∵⊙D与AB相切于点A,
∴AB⊥AD,
∵AD∥BC,DE⊥BC,
∴DE⊥AD,
∴∠DAB=∠ADE=∠DEB=90°,
∴四边形ABED为矩形.

(2)解:∵四边形ABED为矩形,
∴DE=AB=4,
∵DC=DA,
∴点C在⊙D上,
∵D为圆心,DE⊥BC,
∴CF=2EC,
AD
BC
=
3
4
,设AD=3k(k>0)则BC=4k,
∴BE=3k,
EC=BC-BE=4k-3k=k,
DC=AD=3k,
由勾股定理得DE2+EC2=DC2
即42+k2=(3k)2
∴k2=2,
∵k>0,
∴k=
2

∴CF=2EC=2
2
点评:本题考查了勾股定理,切线的判定和性质,矩形的判定,垂径定理等知识点的应用,通过做此题培养了学生的推理能力和计算能力,用的数学思想是方程思想,题目具有一定的代表性,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•湖州)已知:如图,在?ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.
(1)说明△DCE≌△FBE的理由;
(2)若EC=3,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湖州)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湖州一模)已知某函数关系式中的x与y满足下表(x是自变量),则此函数关系式为
x -3 -2 -1 1 2 3
y 1 1.5 3 -3 -1.5 -1
(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湖州一模)已知
x-2
3
4-x
4
的值相等时,x=
20
7
20
7

查看答案和解析>>

同步练习册答案