精英家教网 > 初中数学 > 题目详情
18、将连续的自然数1至1001按如图的方式排列成一个长方形阵列,用一个正方形框出9个数,要使这个正方形框出的9个数之和分别为:(1)2007;(2)2008、这是否可能?若可能,请写出这9个数中的最小数和最大数;若不可能,试说明理由.
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
995 996 997 998 999 1000 1001
分析:设最小的数为x,根据图形可以知道另外8个数分别为:x+1、x+2、x+7、x+8、x+9、x+14、x+15、x+16,要求9个数之和,将这9个数加起来等于所给的数即可.
解答:解:观察图形可知,每个数比它下面的数小7,比它后边的小1.
∴设9个数中最小的一个为x,则可得出另外8个为x+1、x+2、x+7、x+8、x+9、x+14、x+15、x+16.
(1)框中9个数之和能为2007.
∵9个数之和分别为2007,
∴x+(x+1)+(x+2)+(x+7)+(x+8)+(x+9)+(x+14)+(x+15)+(x+16)=2007,
解得:x=215,即x+16=231,
∴框中9个数之和为2007,其中最小数是215,最大数是231;
(2)框中9个数之和不可能为2008.
理由:假设可以,
∵9个数之和分别为2008,
∴x+(x+1)+(x+2)+(x+7)+(x+8)+(x+9)+(x+14)+(x+15)+(x+16)=2008,
解得x=215.1,不为整数,
故假设不成立,
即框中9个数之和不能为2008.
点评:本题考查了一元一次方程的应用,要注意观察图形,找到隐含的关系,方便求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、将连续的自然数1至36按如图的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为a,用含有a的代数式表示这9个数的和为
9a

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网将连续的自然数1至1001按下图的方式排成一个长方形阵列,用一个长方形框出16个数,要使这个长方形框出的16个数之和分别等于(1)1998,(2)1991,(3)2000,(4)2080,这是否可能?若不可能,试说明理由;若可能,请写出该方框所框出的16个数中的最小数与最大数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)在2006年元月的日历中(见下图1),任意圈出一竖列上相邻的三个数,设中间一个数为a,则用a的代数式表示这三个数(从小到大排列)分别是
a-7,a,a+7
a-7,a,a+7


(2)现将连续的自然数1至2006按图2的方式排成一个长方形陈列,用一个正方形框出9个数(见右图2).
①图2中框出的这9个数的和是
162
162

②有同学说:仿照①,图2中任意框出的9个数的和一定是中间一个数的9倍.你同意这种说法吗?为什么?
③在图2中,要使一个正方形框出的9个数的和分别等于2005,2007,你认为是否可能?如果有可能,请求出该正方形框出的9个数中的最大数和最小数;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年河南省中考数学试卷(课标卷)(解析版) 题型:填空题

(2005•河南)将连续的自然数1至36按如图的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为a,用含有a的代数式表示这9个数的和为   

查看答案和解析>>

同步练习册答案