分析 利用对顶角相等得到∠1=∠AMN,则∠1+∠AMN=180°,于是根据同旁内角互补,两直线平行可判断AB∥CD;延长EF交CD与G,如图,由AB∥CD得到∠AEG=∠EGN,加上∠AEF=∠HLN,所以∠EGN=∠HLN,于是根据同位角相等,两直线平行可判断EF∥HL.
解答 解:AB∥CD,EF∥HL.理由如下:
∵∠1=∠AMN,
∵∠1+∠2=180°,
∴∠1+∠AMN=180°,
∴AB∥CD;
延长EF交CD与G,如图,
∵AB∥CD,
∴∠AEG=∠EGN,
∵∠AEF=∠HLN,
∴∠EGN=∠HLN,
∴EF∥HL.
点评 本题考查了平行线的判定:同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0或$-\frac{1}{2}$ | B. | 0或-2 | C. | -2 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com