精英家教网 > 初中数学 > 题目详情
7.计算下列各式的值:
(1)20-(-7)-|-2|;
(2)(-1)3-$\frac{1}{4}$×[2-(-3)2].

分析 (1)原式先利用减法法则及绝对值的代数意义化简,计算即可得到结果;
(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.

解答 解:(1)原式=20+7-2=25;
(2)原式=-1-$\frac{1}{4}$×(-7)=-1+$\frac{7}{4}$=$\frac{3}{4}$.

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.小李从A地出发,沿北偏西70°方向走到B地,再从B地出发沿南偏东30°方向走到C地,则∠ABC=40°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,-1),该抛物线与BE交于另一点F,连接BC.
(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x-h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平行于y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是(  )
A.$\frac{1}{16}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若a、b互为相反数,c、d互为倒数,|m|=3,则$\frac{a+b}{4m}+{m}^{2}-3cd+5m$的值为21或-9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,直线l1:y1=x和直线l2:y2=-2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.
(1)求点A的坐标,并回答当x取何值时y1>y2
(2)求△AOB的面积;
(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图A、B两点在函数y=$\frac{k}{x}$(x<0)的图象上.
(1)求k的值及直线AB的解析式;
(2)如果一个点的横、纵坐标均为整数,那么我们称这个点叫做格点,请直接写出图中阴影部分(含边界)所含格点的坐标(A、B两点除外).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y=$\frac{k}{x}$(k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3,$\frac{2}{3}$).
(1)求反比例函数的表达式和m的值;
(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(  )
A.60B.70C.80D.90

查看答案和解析>>

同步练习册答案