精英家教网 > 初中数学 > 题目详情
(2012•盐城模拟)如图a,在平面直角坐标系中,A(0,6),B(4,0)

(1)按要求画图:在图a中,以原点O为位似中心,按比例尺1:2,将△AOB缩小,得到△DOC,使△AOB与△DOC在原点O的两侧;并写出点A的对应点D的坐标为
(0,-3)
(0,-3)
,点B的对应点C的坐标为
(-2,0)
(-2,0)

(2)已知某抛物线经过B、C、D三点,求该抛物线的函数关系式,并画出大致图象;
(3)连接DB,若点P在CB上,从点C向点B以每秒1个单位运动,点Q在BD上,从点B向点D以每秒1个单位运动,若P、Q两点同时分别从点C、点B点出发,经过t秒,当t为何值时,△BPQ是等腰三角形?
分析:(1)在射线AO上截取OD=3,在射线BO上截取OC=2,然后连接CD,即可得到△DOC,然后根据平面直角坐标系写出点D、C的坐标即可;
(2)根据点B、C的坐标设交点式解析式y=a(x+2)(x-4),然后把点D的坐标代入求出a的值,即可得到抛物线解析式,然后作出大致图象即可;
(3)先用t表示出CP、BQ、BP的长度,并根据点B、D的坐标求出OB、OD的长度,根据勾股定理求出BD的长度,然后分①QP=QB时,过Q作QG⊥BC于G,根据三角形三线合一的性质可得BG=
1
2
BP,再根据△BGQ和△BOD相似,利用相似三角形对应边成比例列式计算即可求出t的值;②BP=BQ时,列出方程求解即可得到t的值;③PQ=PB时,过P作PH⊥BD于H,根据等腰三角形三线合一的性质可得BH=
1
2
BQ,再根据△BHP和△BOD相似,利用相似三角形对应边成比例列式计算即可求出t的值.
解答:解:(1)△DOC如图所示,
点C(-2,0),D(0,-3),
故答案为:D(0,-3),C(-2,0);

(2)∵C(-2,0),B(4,0),设抛物线y=a(x+2)(x-4),
将D(0,-3)代入,得-8a=-3,
解得a=
3
8

所以,y=
3
8
(x+2)(x-4),
即y=
3
8
x2-
3
4
x-3,
大致图象如图所示;

(3)设经过ts,△BPQ为等腰三角形,
此时CP=t,BQ=t,
所以,BP=6-t,
∵OD=3,OB=4,
∴BD=
OD2+OB2
=
32+42
=5,

①QP=QB时,如图,过Q作QG⊥BC于G,则BG=
1
2
BP=
1
2
(6-t),
由△BGQ∽△BOD,得
BG
BO
=
BQ
BD

1
2
(6-t)
4
=
t
5

解得t=
30
13
s;
②BP=BQ时,则6-t=t,
解得t=3s;

③PQ=PB时,如图,过P作PH⊥BD于H,则BH=
1
2
BQ=
1
2
t,
由△BHP∽△BOD,得
BH
BO
=
BP
BD

1
2
t
4
=
6-t
5

解得t=
48
13
s,
综上所述,当t=
30
13
s或3s或
48
13
s时,△BPQ为等腰三角形.
点评:本题是二次函数的综合题型,主要涉及了位似变换,待定系数法求二次函数解析式,解等腰三角形,(2)用抛物线的交点式形式求解比较简单,(3)要注意根据等腰三角形的腰长的不同分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•盐城模拟)已知二次函数的图象(-0.7≤x≤2)如图所示、关于该函数在所给自变量x的取值范围内,下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐城模拟)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A(-2,0)和点B,与y轴相交于点C,顶点D(1,-
92

(1)求抛物线对应的函数关系式;
(2)求四边形ACDB的面积;
(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐城模拟)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为
x(x-1)=2070(或x2-x-2070=0)
x(x-1)=2070(或x2-x-2070=0)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐城模拟)已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是
10
10

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐城模拟)如图,△ABC中,AB=AC=13,BC=10,D为BC中点,DE⊥AB于E,则DE=
60
13
60
13

查看答案和解析>>

同步练习册答案