精英家教网 > 初中数学 > 题目详情
15、如图,已知BD⊥AE于B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是∠A=∠D或
∠ACB=∠BDE
AC=DE
AB=DB
∠A+∠E=90°
∠D+∠ACB=90°等
分析:要使Rt△ABC≌Rt△DBE,现有直角对应相等,一直角边对应相等,还缺少一边或一角对应相等,答案可得.
解答:解:∵BD⊥AE
∴∠ABC=∠DBE,
∵BC=BE,
加∠ACB=∠BDE就可以用ASA使Rt△ABC≌Rt△DBE;
加AC=DE就可以用HL使Rt△ABC≌Rt△DBE;
加AB=DB就可以用SAS使Rt△ABC≌Rt△DBE;
加∠ACB=∠D也可以使Rt△ABC≌Rt△DBE;
加∠A+∠E=90°或∠D+∠ACB=90°一样可以证明Rt△ABC≌Rt△DBE.
所以填∠ACB=∠BDE或AC=DE或AB=DB或∠A+∠E=90°或∠D+∠ACB=90°等.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°.AC与BD平行吗?AE与BF平行吗?抄写下面的解答过程,并填空或填写理由.
解∵∠1=35°,∠2=35°
∴∠1=∠2(
等量代换
);
∴(
AC
)∥(
BD
)(
同位角相等,两直线平行
);
又∵AC⊥AE
∴∠EAC=90°;
∴∠EAB=∠EAC+∠1=(
125°
)(
等式的性质
);
同理可得∠FBD+∠2=(
125°

∴(
AE
)∥(
BF
)(
同位角相等,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知BD为等边△ABC的中线,DE⊥AB于点E,若BC=3,则AE=
3
4
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°.AC与BD平行吗?AE与BF平行吗?抄写下面的解答过程,并填空或填写理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,已知BD⊥AE于B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是∠A=∠D或________或________或________或________或________.

查看答案和解析>>

同步练习册答案