精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,PA,PB分别切⊙O于点A,B,PO交AB于点M,C是MB上的一点,OC的延长线交⊙O于点E,PD⊥OE,垂足为D,且OC=3,OD=8,求⊙O的半径.
分析:先利用切线的性质证明△OCM∽△OP′D,则
OC
OP
=
OM
OD
,可以求得OP•OM,再利用切线的性质得△OBM∽△OPB,则
OB
OP
=
OM
OB
,从而求出OB,即⊙O的半径.
解答:解:∵PA、PB是⊙O的切线,
∴PA=PB,∠1=∠2,
∴PO⊥AB,即∠BMO=90°,
又PD⊥OD,
∴∠PDO=90°,
∴∠BMO=∠PDO,
∵∠COM=∠DOP,
∴△OCM∽△OP′D,
OC
OP
=
OM
OD

∴OP•OM=OC•OD,
又OC=3,OD=8,
∴OP•OM=3×8=24,
∵OP是⊙O的切线,
∴OB⊥PB,
又∵PO⊥AB,
∴△OBM∽△OPB,
OB
OP
=
OM
OB

∴OB2=OP•OM=24,
∴OB=2
6

故⊙O的半径为2
6
点评:本题考查了相似三角形的判定和性质,切线的性质,切线长定理等知识,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=2PB,求
PAPB
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,PA、PB是⊙O的切线;A、B是切点;连接OA、OB、OP,
(1)若∠AOP=60°,求∠OPB的度数;
(2)过O作OC、OD分别交AP、BP于C、D两点,
①若∠COP=∠DOP,求证:AC=BD;
②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,PA切⊙O于A,△ABC为⊙O的内接三角形,CA∥EP,AB、CB的延长线分别交DP精英家教网于点D、E.
(1)求证:DE•DP=DA•DB.
(2)若AB=4,AC=6,DB=3,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠ACB=65°,则∠APB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,PA切⊙O于A点,PO交⊙O于B点.PA=15cm,PB=9cm.求⊙O的半径长.

查看答案和解析>>

同步练习册答案