精英家教网 > 初中数学 > 题目详情
从2开始,连续的偶数相加,它们的和的情况如下表:
加数m的个数    和(S)
1-----------→2=1×2
2--------→2+4=6=2×3
3------→2+4+6=12=3×4
4----→2+4+6+8=20=4×5
5--→2+4+6+8+10=30=5×6
(1)按这个规律,当m=6时,和为
42
42

(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:
2+4+6+…+2m=m(m+1)
2+4+6+…+2m=m(m+1)

(3)应用上述公式计算:
①2+4+6+…+200      ②202+204+206+…+300.
分析:(1)仔细观察给出的等式可发现从2开始连续两个偶数和1×2,连续3个偶数和是2×3,连续4个,5个偶数和为3×4,4×5,从而推出当m=6时,和的值;
(2)根据分析得出当有m个连续的偶数相加是,式子就应该表示成:2+4+6+…+2m=m(m+1).
(3)根据已知规律进行计算,得出答案即可.
解答:解:(1)∵2+2=2×2,
2+4=6=2×3=2×(2+1),
2+4+6=12=3×4=3×(3+1),
2+4+6+8=20=4×5=4×(4+1),
∴m=6时,和为:6×7=42;

(2)∴和S与m之间的关系,用公式表示出来:2+4+6+…+2m=m(m+1);
(3)①2+4+6+…+200  
=100×101,
=10100;
 ②∵2+4+6+…+300=150×151=22650,
∴202+204+206+…+300.
=22650-10100,
=12550.
点评:此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:

(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;
(2)并按此规律计算:(a)2+4+6+…+300的值;(b)162+164+166+…+400的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:

(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;
(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.

查看答案和解析>>

科目:初中数学 来源: 题型:

拓展探索、综合提升
从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n S
1 2=1×2
2 2+4=6=2×3
3 2+4+6=12=3×4
4 2+4+6+8=20=4×5
5 2+4+6+8+10=30=5×6
(1)若n=8时,则S的值为
72
72

(2)根据表中的规律猜想:用n的代数式表示S的公式为:S=2+4+6+8+…+2n=
n(n+1)
n(n+1)

(3)根据上题的规律计算102+104+106+…+2002的值(要有过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

从2开始,连续的偶数相加(特别地把n个2也看做和),和的情况如下:2=2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5.
(1)请推测从2开始,n个连续偶数相加,和是多少?
(2)取n=7,验证(1)的结论是否正确.

查看答案和解析>>

科目:初中数学 来源: 题型:

从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n 连续偶数的和S
1 2=1×2
2 2+4=6=2×3
3 2+4+6=12=3×4
4 2+4+6+8=20=4×5
5 2+4+6+8+10=30=5×6
(1)如果n=8时,那么S的值为
72
72

(2)根据表中的规律猜想:用n的代数式表示S的公式为:S=2+4+6+8+…+2n=
n(n+1)
n(n+1)

(3)根据上题的规律计算300+302+304+…+2010+2012的值(要有计算过程).

查看答案和解析>>

同步练习册答案