精英家教网 > 初中数学 > 题目详情

【题目】小明做“用频率估计概率”的实验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是(
A.同时抛掷两枚硬币,落地后两枚硬币正面都朝上
B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃
C.抛一个质地均匀的正方体骰子,朝上的面点数是3
D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球

【答案】C
【解析】解:A、同时抛掷两枚硬币,落地后两枚硬币正面都朝上的概率为 ,故A选项错误; B、一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃的概率是 ;故B选项错误;
C、抛一个质地均匀的正方体骰子,朝上的面点数是3的概率是 ≈0.17,故C选项正确;
D、一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球的概率为 故D选项错误.
故选:C.
【考点精析】利用频数折线图和用频率估计概率对题目进行判断即可得到答案,需要熟知能清楚地表示出收集或调查得到的各组的频数及变化;在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】你能求(x-1)(x99+x98+x97+…+x+1)的值吗?

遇到这样的问题,我们可以先思考一下,从简单的情形入手.

分别计算下列各式的值:

(1)(x﹣1)(x+1)=x2﹣1;

(2)(x﹣1)(x2+x+1)=x3﹣1;

(3)(x﹣1)(x3+x2+x+1)=x4﹣1;

由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)= _________ ;

请你利用上面的结论,完成下面两题的计算:

(1)299+298+297+…+2+1;

(2)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BCE 三点在同一条直线上,ABDCBC=DC,∠ACD=E.

求证:(1)∠ACB=D

2AB=EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,已知线段AD平分∠BACBCD,∠B=62°,∠C=58°.

(1)用尺规作出线段AD,并求∠ADB的度数;

(2)若DE⊥AC于点E,把图形补充完整并求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC=90°,ABBCDAC上一点,AEBD,交BD的延长线于ECFBDF.

(1)求证:CFBE

(2)BD=2AE,求证:∠EADABE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示是一个雷达探测器的示意图,探测器的位置在O点(圆心位置),如果六个同心圆的半径依次为1km,2km,3km,4km,5km,6km,请你以点O为参照点,用方位角和距离分别表示雷达探测器探测到的目标A,B,C,D,E,F的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年9月10日,郑徐高铁正式运营.从徐州到郑州全程约360km,高铁开通后,运行时间比特快列车所用的时间减少了2.1小时.若高铁列车的平均速度是特快列车平均速度的2.4倍,求特快列车的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,已知点C在线段AB上,且AC=5cm,BC=3cm,M,N分别是AC,BC的中点,求线段MN的长度.

(2)若点C是线段AB上任意一点,且AC=a,BC=b, M、N分别是,AC,BC的中点,请直接写出线段MN的长度(用含a,b的代数式表示)

查看答案和解析>>

同步练习册答案