精英家教网 > 初中数学 > 题目详情
14.已知边长为a的正方形的面积为8,则下列说法中,错误的是(  )
A.a是无理数B.a是方程x2-8=0的解
C.a是8的算术平方根D.a满足不等式$\frac{2x-4}{3}>1$

分析 由无理数,算术平方根,方程的解的概念进行判断即可.

解答 解:∵边长为a的正方形的面积为8,
∴a=$\sqrt{8}$=2$\sqrt{2}$,
∴A,B,C都正确,
故选D.

点评 本题考查了无理数,算术平方根,方程的解,熟记概念是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.$\sqrt{25}$的平方根是±$\sqrt{5}$.比较大小:2$\sqrt{7}$<4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.若正实数x、y、z、r满足:(1)x2+y2=z2;(2)z$\sqrt{{x}^{2}-{r}^{2}}$=x2,求证:xy=zr(提示:可根据条件构造直角三角形和其斜边上的高来证明).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形,当边长为10根火柴棍时,摆出的正方形所用的火柴棍的根数为(  )
A.220B.200C.120D.100

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.一次函数y=-5x+3的图象经过的象限是(  )
A.一 二 三B.二 三 四C.一 二 四D.一 三 四

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.设函数y1=(x-k)2+k和y2=(x+k)2-k的图象相交于点A,函数y1,y2的图象的顶点分别为B和C.
(1)画出当k=0,1时,函数y1,y2在直角坐标系中图象;
(2)观察(1)中所画函数图象的顶点位置,发现它们均分布在某个函数的图象上,请写出这个函数的解析式,并说明理由;
(3)设A(x,y),求证:x是与k无关的常数,并求y的最小值;
(4)设直线l:y=ax+1的图象分别与函数y1,y2的图象交于A,B和C,D.若AB=CD,写出所有实数a.(直接写出a的值即可,不要求写理由)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在平面直角坐标系中,已知点A(1,1),B(-1,1),C(-1,-2),D(1,-2),动点P从点A出发,以每秒2个单位的速度按逆时针方向沿四边形ABCD的边做环绕运动;另一动点Q从点C出发,以每秒3个单位的速度按顺时针方向沿四边形CBAD的边做环绕运动,则第2014次相遇点的坐标是(  )
A.(-1,-1)B.(-1,1)C.(-2,2)D.(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在等腰直角△ABC中,AB=BC,点M是BC边上任意一点,点D是AB的延长线上一点,且BM=BD;又有点E、F分别是CD、AM边的中点,连结FE、EB.下列结论一定正确的有(  )
①△AMB≌△CDB
②∠BEF的度数始终保持不变
③始终有$\frac{EF}{AC}$=$\frac{BD}{AB}$成立
④若$\frac{EF}{AC}$=$\frac{3}{5}$,则$\frac{AB}{AM}$=$\frac{5}{6}$.
A.①②B.①②③C.①②③④D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,将抛物线M1:y=ax2+4x向右平移3个单位,再向上平移3个单位,得到抛物线M2,直线y=x与M1的一个交点记为A,与M2的一个交点记为B,点A的横坐标是-3.
(1)求a的值及M2的表达式;
(2)点C是线段AB上的一个动点,过点C作x轴的垂线,垂足为D,在CD的右侧作正方形CDEF.
①当点C的横坐标为2时,直线y=x+n恰好经过正方形CDEF的顶点F,求此时n的值;
②在点C的运动过程中,若直线y=x+n与正方形CDEF始终没有公共点,求n的取值范围(直接写出结果).

查看答案和解析>>

同步练习册答案