【题目】如图,四边形内一点满足,,,交于点,交于点.
(1)的度数为__________.
(2)若四边形是平行四边形
①求证:;
②若,求的值.
【答案】(1);(2)①证明见解析;②4
【解析】
(1)根据等式的性质求得∠BED=∠CEA,然后利用SAS定理求得△BED≌△CEA,从而得到∠BDE=∠CAE,然后求得∠AFE+∠EAF=90°,问题得解;
(2)①结合平行四边形和等腰直角三角形的性质求得,根据周角360°求得,然后利用边角边定理求得,,从而得到,,问题得解;
②由①求得,从而得到,从而求得,用AA定理证明,然后根据相似三角形的性质列比例式求解.
解:(1)∵
∴
∴∠BED=∠CEA
又∵,,
∴△BED≌△CEA
∴∠BDE=∠CAE
又∵∠CFD=∠AFE,∠AFE+∠EAF=90°
∴∠BDE+∠AFE=90°
即
故答案为:90°
(2)①∵四边形是平行四边形,
∴,,
∵是等腰直角三角形,
∴,∴,∴,
∴,
∵,
∴,
又,,
∴,∴;
∵,∴,
∵,,
∴,∴,
∴.
②∵,
∴,
∴,
∵,
∴,
∵,,
∴,
∴,
∵,,
∴,∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A(-1,0)和B(3,0)两点,与y轴交于点C,对称轴与x轴交于点E,点D为顶点,连接BD、CD、BC.
(1)求证△BCD是直角三角形;
(2)点P为线段BD上一点,若∠PCO+∠CDB=180°,求点P的坐标;
(3)点M为抛物线上一点,作MN⊥CD,交直线CD于点N,若∠CMN=∠BDE,请直接写出所有符合条件的点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为R△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC的一条完美分割线.
(1)如图1,AB=10,cosA=,AD=3,若DE为完美分割线,则BE的长是 .
(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.
(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB的中点,连结PD、PE,求cos∠PDE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1个单位长度的小正方形组成的网格图中有格点△ABC(注:顶点在网格线交点处的三角形叫做格点三角形).只用没有刻度的直尺,按如下要求画图,
(1)以点C为位似中心,在如图中作△DEC∽ABC,且相似比为1:2;
(2)若点B为原点,点C(4,0),请在如图中画出平面直角坐标系,作出△ABC的外心,并直接写出△ABC的外心的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学初三年级积极推进走班制教学.为了了解一段时间以来,“至善班”的学习效 果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取名同学在某一次定时测试中的数学成绩,其结果记录如下:
收集数据:
“至善班”甲班的名同学的数学成绩统计(满分为 100 分)(单位:分)
“至善班”乙班的名同学的数学成绩统计(满分为 100 分)(单位:分)
整理数据:(成绩得分用表示)
分数 数量 班级 | |||||
甲班(人数) | 1 | 3 | 4 | 6 | 6 |
乙班(人数) | 1 | 1 | 8 | 6 | 4 |
分析数据,并回答下列问题:
完成下表:
平均数 | 中位数 | 众数 | |
甲班 | |||
乙班 |
在“至善班”甲班的扇形图中, 成绩在的扇形中,所对的圆心角的度数为 . 估计全部“至善班”的人中优秀人数为 人.(分及以上为优秀).
根据以上数据,你认为“至善班” 班(填“甲”或“乙”)所选取做样本 的同学的学习效果更好一些,你所做判断的理由是:
①
②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】调查作业:了解你所住小区家庭3月份用气量情况.
小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2—5之间,这300户家庭的平均人数约为3.3.
小天、小东和小芸各自对该小区家庭3月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2、表3,
表1抽样调查小区4户家庭3月份用气量统计表(单位:)
家庭人数 | 2 | 3 | 4 | 5 |
用气量 | 14 | 19 | 21 | 26 |
表2抽样调查小区15户家庭3月份用气量统计表(单位:)
家庭人数 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 |
用气量 | 10 | 11 | 15 | 13 | 14 | 15 | 17 | 17 | 18 | 18 | 18 | 18 | 18 | 20 | 22 |
表3抽样调查小区15户家庭3月份用气量统计表(单位:)
家庭人数 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 |
用气量 | 10 | 12 | 13 | 14 | 17 | 17 | 18 | 20 | 20 | 21 | 22 | 26 | 31 | 28 | 31 |
根据以上材料回答问题:
(1)小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反应出该小区家庭3月份用气量情况?请简要说明其他两位同学抽样调查的不足之处;
(2)小东将表2中的数据按用气量大小分为三类;
①节约型:;
②居中型:;
③偏高型:;并绘制成如下扇形统计图,请帮助他将扇形图补充完整;
(3)小芸算出表3中3月份平均每人的用量为,请估计该小区3月份的总用气量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“烟花三月下扬州”-----扬州人杰地灵,是著名的旅游城市,继获“联合国人居奖”后,2019年又获“世界美食之都”的殊荣.“五一”长假期间,某餐饮企业为欢迎外地游客,推出了一个就餐酬宾活动:一只不透明的袋子中装有分别标着A、B、C、D字母的四个球,分别对应扬州的四种美食:A--扬州酱菜、 B--扬州包子、C--扬州老鹅、D--扬州炒饭,这些球除字母标记外其余都相同.游客消费可参与活动:单笔消费满600元可一次摸出一个球获取一种相应的美食,单笔消费满1000元可一次摸出两个球获取两种相应的美食,单笔消费满1300元可一次摸出三个球获取三种相应的美食,单笔消费满1500元可一次获取四项奖品.某游客消费了1200元,参加这个活动,请用树状图或列表的方式列出他获得美食的所有可能结果,并求出获得扬州包子和扬州老鹅的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y(x>0)的图象与直线y=2x+1交于点A(1,m)
(1)求k,m的值;
(2)已知点P(0,n)(n>0),过点P作平行于x轴的直线,交直线y=2x+1于点B,交函数y(x>0)的图象于点C.横、纵坐标都是整数的点叫做整点.
①当n=1时,写出线段BC上的整点的坐标;
②若y(x>0)的图象在点A,C之间的部分与线段AB,BC所围成的区域内(包括边界)恰有6个整点,直接写出n的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com