精英家教网 > 初中数学 > 题目详情

【题目】如图,反比例函数y= (k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为

【答案】-
【解析】解:设点B坐标为(a,b),则DO=﹣a,BD=b
∵AC⊥x轴,BD⊥x轴
∴BD∥AC
∵OC=CD
∴CE= BD= b,CD= DO= a
∵四边形BDCE的面积为2
(BD+CE)×CD=2,即 (b+ b)×(﹣ a)=2
∴ab=﹣
将B(a,b)代入反比例函数y= (k≠0),得
k=ab=﹣
所以答案是:﹣

【考点精析】利用比例系数k的几何意义和平行线分线段成比例对题目进行判断即可得到答案,需要熟知几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积;三条平行线截两条直线,所得的对应线段成比例.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.

项目
学生

长跑

短跑

跳绳

跳远

200

×

300

×

×

150

×

200

×

×

150

×

×

×


(1)估计学生同时喜欢短跑和跳绳的概率;
(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;
(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BACBC于点D,AE⊥BC,垂足为E,且CF∥AD.

(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE=   度;

(2)若图1中的∠B=x,∠ACB=y,则∠CFE=   ;(用含x、y的代数式表示)

(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是由若干个完全相同的小正方体组成的一个几何体.
(1)请画出这个几何体的左视图和俯视图;(用阴影表示)
(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则SADE:SCDB的值等于(  )

A.1:
B.1:
C.1:2
D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由图中三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是()

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1 , 点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2 , 点A1的对应点为点A2

(1)画出△A1B1C1
(2)画出△A2B2C2
(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O交AE于点F.
(1)求⊙O的半径及圆心O到弦EF的距离;
(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C,楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度(结果精确到0.1m).(参考数据: ≈1.41, ≈1.73)

查看答案和解析>>

同步练习册答案