精英家教网 > 初中数学 > 题目详情
3.如图,在△ABC中,∠ACB=90°.
(1)尺规作图:作△ABC的外接圆⊙O,作∠ACB的平分线与⊙O交于点D,连接BD,保留作图痕迹,不写作法,请标明字母;
(2)在你按(1)中要求所作的图中,若AC=8,BC=6,求BD的长.

分析 (1)作AB的垂直平分线得到AB的中点O,再以O点为圆心,OA为半径作⊙O,然后作∠ACB的平分线交⊙O于点D;
(2)先利用勾股定理计算出AB=10,再利用圆周角定理得到∠ADB=90°,∠ACD=∠BCD=∠ABD=∠BAD=45°,则△ADB为等腰直角三角形,于是得到BD=$\frac{\sqrt{2}}{2}$AB=5$\sqrt{2}$.

解答 解:(1)如图,⊙O和CD为所作;

(2)连接AD,如图,在Rt△ABC中,AB=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∵∠ACB=90°,
∴AB为直径,
∴∠ADB=90°,
∵CD平分∠ACB,
∴∠ACD=∠BCD=45°,
∴∠ABD=∠BAD=45°,
∴△ADB为等腰直角三角形,
∴BD=$\frac{\sqrt{2}}{2}$AB=5$\sqrt{2}$.

点评 本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外接圆和圆周角定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列说法错误的是(  )
A.“打开电视,正在播放新闻节目”是随机事件
B.为了解某种节能灯的使用寿命,选择全面调查
C.频数折线图能清楚的反映事物的变化情况,显示数据变化趋势
D.2016年我市有5.6万名初中毕业生参加升学考试,为了了解这5.6万名考生的数学成绩,从中抽取200名考生的数学成绩进行统计,在这个问题中样本是这200名考生的数学成绩

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)已知x=$\sqrt{3}$+1,y=$\sqrt{3}$-1,求下列各式的值.
①x2+2xy+y2                   
②x2-y2
(2)先化简,再求值:$\frac{2a}{{a}^{2}-4}$÷($\frac{{a}^{2}}{a-2}$-a),其中a=$\sqrt{3}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离s(千米)与所用时间t(分)之间的关系(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,将△ABC绕着点A旋转后,点B、C的对应点分别记为B1、C1,如果点B1落在射线BD上,那么CC1的长度为$\frac{16\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在边长为4的正方形ABCD中,E为AD的中点,F为BC边上一动点,设BF=t(0≤t≤2),线段EF的垂直平分线GH分别交边CD,AB于点G,H,过E做EM⊥BC于点M,过G作GN⊥AB于点N.
(1)当t≠2时,求证:△EMF≌△GNH;
(2)顺次连接E、H、F、G,设四边形EHFG的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)-14+(-2013)0-${(\frac{1}{2})}^{-2}$+$\sqrt{4}$
(2)先化简再求值:(1+a)(1-a)+(a-2)2,其中a=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:$\sqrt{4}$+|-2|+$\root{3}{-27}$+(-1)2016

查看答案和解析>>

同步练习册答案