精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于 BF长为半径画弧,两弧交于一点P,连
接AP并延长交BC于点E,连接EF.

(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)
(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为 , ∠ABC=°.(直接填写结果)

【答案】
(1)菱形
(2)10 ;120
【解析】解:(1)在△AEB和△AEF中,

∴△AEB≌△AEF,
∴∠EAB=∠EAF,
∵AD∥BC,
∴∠EAF=∠AEB=∠EAB,
∴BE=AB=AF.
∵AF∥BE,
∴四边形ABEF是平行四边形
∵AB=AF,
∴四边形ABEF是菱形.
所以答案是菱形.
2)∵四边形ABEF是菱形,
∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,
∵AB=10,
∴AB=2BO,∵∠AOB=90°
∴∠BA0=30°,∠ABO=60°,
∴AO= BO=5 ,∠ABC=2∠ABO=120°.
所以答案是10 ,120.

【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图将两条宽度都为3的纸条重叠在一起使ABC=60°则四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于点C(0,3).且点A的坐标为(﹣1,0),点B的坐标为(3,0),点P是抛物线上第一象限内的一个点.

(1)求抛物线的函数表达式;
(2)连PO、PB,如果把△POB沿OB翻转,所得四边形POP′B恰为菱形,那么在抛物线的对称轴上是否存在点Q,使△QAB与△POB相似?若存在求出点Q的坐标;若不存在,说明理由;
(3)若(2)中点Q存在,指出△QAB与△POB是否位似?若位似,请直接写出其位似中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的正方形ABCD中,点G是BC边上的任意一点(不同于端点B、C),连接AG,过B、D两点作BE⊥AG,DF⊥AG,垂足分为E、F.

(1)求证:△ABE≌△DAF;

(2)若ADF的面积为1,试求|BE﹣DF|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,一次函数y=kx+3的图象经过点A(1,4).

(1)求这个一次函数的解析式;

(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y= 的图象上.一次函数y=x+b的图象过点A,且与反比例函数图象的另一交点为B.

(1)求k和b的值;
(2)设反比例函数值为y1 , 一次函数值为y2 , 求y1>y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线AB、CD、EF都经过点O,ABCD,OG平分∠BOE,如果∠EOG=AOE,求∠EOG,DOF和∠AOE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.

(1)求证:四边形BEDF是平行四边形;

(2)当四边形BEDF是菱形时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠B=40°,C=80°,ADBC边上的高,AE平分∠BAC.

(1)求∠BAE的度数;(2)求∠DAE的度数.

查看答案和解析>>

同步练习册答案