精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.

(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.
(1)A(1,0),B(5,0),证明见解析
(2)△MDE能成为等腰直角三角形,此时点P坐标为(,3)
(3)能。此时点P坐标为()。

试题分析:(1)在抛物线解析式中,令y=0,解一元二次方程,可求得点A、点B的坐标。如答图1所示,作辅助线,构造全等三角形△AMF≌△BME,得到点M为为Rt△EDF斜边EF的中点,从而得到MD=ME,问题得证。
中,令y=0,即﹣,解得x=1或x=5,
∴A(1,0),B(5,0)。
如答图1所示,分别延长AD与EM,交于点F,

∵AD⊥PC,BE⊥PC,∴AD∥BE。∴∠MAF=∠MBE。
在△AMF与△BME中,
∵∠MAF=∠MBE,MA=MB,∠AMF=∠BME,
∴△AMF≌△BME(ASA)。
∴ME=MF,即点M为Rt△EDF斜边EF的中点。
∴MD=ME,即△MDE是等腰三角形。
(2)首先分析,若△MDE为等腰直角三角形,直角顶点只能是点M。如答图2所示,设直线PC与对称轴交于点N,证明△ADM≌△NEM,得到MN=AM,从而求得点N坐标为(3,2);利用点N、点C坐标,求出直线PC的解析式;最后联立直线PC与抛物线的解析式,求出点P的坐标。
能。
,∴抛物线的对称轴是直线x=3,M(3,0)
令x=0,得y=﹣4,∴C(0,﹣4)。
△MDE为等腰直角三角形,有3种可能的情形:
①若DE⊥EM,
由DE⊥BE,可知点E、M、B在一条直线上,而点B、M在x轴上,因此点E必然在x轴上。
由DE⊥BE,可知点E只能与点O重合,即直线PC与y轴重合,不符合题意。
故此种情况不存在。
②若DE⊥DM,与①同理可知,此种情况不存在。
③若EM⊥DM,如答图2所示,

设直线PC与对称轴交于点N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA。
在△ADM与△NEM中,
∵∠DMA =∠EMN,DM = EM,∠ADM=∠NEM=135°,
∴△ADM≌△NEM(ASA)。∴MN=MA。
∵M(3,0),MN=MA=2,∴N(3,2)。
设直线PC解析式为y=kx+b,
∵点N(3,2),C(0,﹣4)在抛物线上,
,解得
∴直线PC解析式为y=2x﹣4。
将y=2x﹣4代入抛物线解析式得: ,解得:x=0或x=
当x=0时,交点为点C;当x=时,y=2x﹣4=3。
∴P(,3)。
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,3)。
(3)当点P是抛物线在x轴下方的一个动点时,解题思路与(2)完全相同:
如答题3所示,设对称轴与直线PC交于点N,

与(2)同理,可知若△MDE为等腰直角三角形,直角顶点只能是点M。
∵MD⊥ME,MA⊥MN,∴∠DMN=∠EMB。
在△DMN与△EMB中,
∵∠SMN =∠EMB,DM = EM,∠MDN=∠MEB=45°,
∴△DMN≌△EMB(ASA)。∴MN=MB。∴N(3,﹣2)。
设直线PC解析式为y=kx+b,
∵点N(3,﹣2),C(0,﹣4)在抛物线上,
,解得
∴直线PC解析式为y=x﹣4。
将y=x﹣4代入抛物线解析式得:,解得:x=0或x=
当x=0时,交点为点C;当x=时,y=x﹣4=。∴P()。
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为()。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线交于点A 、B,与y轴交于点C.

(1)求点A、B的坐标;
(2)若点P是直线x=1上一点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若抛物线与y轴的交点为(0,﹣3),则下列说法不正确的是【   】
A.抛物线开口向上
B.抛物线的对称轴是x=1
C.当x=1时,y的最大值为﹣4
D.抛物线与x轴的交点为(-1,0),(3,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)

(1)求该抛物线的解析式;
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值;
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图(a),抛物线经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N。∠ONE=30°,

(1)求抛物线的解析式及顶点D的坐标;
(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;
(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).

(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。

(1)求抛物线C2的解析式;
(2)探究四边形ODAB的形状并证明你的结论;
(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川眉山11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.

(1)求这条抛物线的解析式;
(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)请直接写出将该抛物线沿射线AD方向平移个单位后得到的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数、二次函数和反比例函数在同一直角坐标系中图象如图,A点为(-2,0)。则下列结论中,正确的是【   】
A.B.C.D.

查看答案和解析>>

同步练习册答案