【题目】如图所示, △ABC是直角三角形,∠A=90°,D是斜边BC的中点,E,F分别是AB,AC边上的动点,且DE⊥DF.
(1)如图(1),连接AD,若AB=AC=17,CF=5,求线段EF的长.
(2)如图(2),若AB≠AC,写出线段EF与线段BE,CF之间的等量关系,并写出证明过程.
【答案】(1)13;(2)EF2=BE2+CF2,证明过程见解析
【解析】
(1)由△ABC是等腰直角三角形,AD是斜边的中线,可得:∠DAC=∠BAD=∠C=45°,AD=DC,AD⊥BC,又DE⊥DF,根据同角的余角相等可得∠EDA=∠CDF,从而可证:△AED≌△CFD,所以可得AE=CF,然后由勾股定理可得出答案;
(2)延长ED到P,使DP=DE,连接FP,CP,利用SAS得到△BED≌△CPD,利用全等三角形的性质得到BE=CP,∠B=∠DCP,然后根据三线合一的性质得到EF=FP,然后求出∠FCP为直角,在直角三角形FCP中,利用勾股定理列出关系式,等量代换即可得证.
(1)∵在Rt△ABC中,AB=AC,AD为BC边的中线,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF,
在△AED与△CFD中,,
∴△AED≌△CFD(ASA),
∴AE=CF,
∵AB=AC=17,CF=5,
∴AE=CF=5,AF=17-5=12,
在Rt△EAF中,由勾股定理得:;
(2)EF2=BE2+CF2;
如图,延长ED到P,使DP=DE,连接FP,CP,
在△BED和△CPD中,,
∴△BED≌△CPD(SAS),
∴BE=CP,∠B=∠DCP,
∵DE⊥DF,DP=DE
∴EF=FP,
∵∠B=∠DCP,∠A=90°,
∴∠B+∠ACB=90°,
∴∠ACB+∠DCP=90°,即∠FCP=90°,
在Rt△FCP中,根据勾股定理得:CF2+CP2=PF2,
∵BE=CP,PF=EF,
∴EF2=BE2+CF2.
科目:初中数学 来源: 题型:
【题目】某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图,请根据图表信息回答下列问题:
初中毕业生视力抽样调查频数分布表
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查的样本容量为 ;
(2)在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE。F为AB上一点,且BF=DE,连接FC.
(1)若DE=1,CF=2,求CD的长。
(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=600,求证:AF+CE=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A和第一象限内一点B,该抛物线顶点H的纵坐标为5.
(1)求抛物线的解析式;
(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;
(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,
ⅰ)求点P的坐标;
ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,点D是BC的中点,BE∥AC,过点D的直线EF交BE于点E,交AC于点F.
(1)求证:BE=CF
(2)如图2,过点D作DG⊥DF交AB于点G,连结GF,请你判断BG+CF与GF的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是( )
A.①③ B.①④ C.②③ D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据对徐州市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图②所示.
(1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时 获得的销售利润之和最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=6,BC=8.
(1)求对角线AC的长;
(2)点E是线段CD上的一点,把△ADE沿着直线AE折叠.点D恰好落在线段AC上,与点F重合,求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知射线AP是△ABC的外角平分线,连结PB、PC.
(1)如图1,若BP平分∠ABC,且∠ACB=30°,写出∠APB的度数.
(2)如图1,若P与A不重合,求证:AB+AC<PB+PC.
(3)如图2,若过点P作PM⊥BA,交BA延长线于M点,且∠BPC=∠BAC,求:的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com