精英家教网 > 初中数学 > 题目详情
4.已知,等边三角形ABC的边长为5,点P在线段AB上,点D在线段BC上,且△PDE是等边三角形.
(1)初步尝试:若点P与点A重合时(如图1),BD+BE=5.
(2)类比探究:将点P沿AB方向移动,使AP=1,其余条件不变(如图2),试计算BD+BE的值是多少?
(3)拓展迁移:如图3,在△ABC中,AB=AC,∠BAC=70°,点P在线段AB的延长线上,点D在线段CB的延长线上,在△PDE中,PD=PE,∠DPE=70°,设BP=a,请直接写出线段BD、BE之间的数量关系(用含a的式子表示)

分析 (1)先判断出∠BPE=∠CAD,进而判断出△PBE≌△ACD,即可得出BD+BE=BC=5;
(2)先构造出等边三角形,再判断出∠BPE=∠FPD,进而判断出△PBE≌△PFD,即可得出BD+BE=BF=4;
(3)类似于(2)的方法判断出△PBE≌△PFD得出BE=DF,再判断出BF=2BG,利用用锐角三角函数求出BG=a•cos55°,即可BD-BE=BF=2a•cos55°.

解答 解:(1)∵△ABC和△PDE是等边三角形,
∴PE=PD,AB=AC,∠DPE=∠CAB=60°,
∴∠BPE=∠CAD,
∴△PBE≌△ACD,
∴BE=CD,
∴BD+BE=BD+CD=BC=5,
故答案为5;

(2)如图2,过点P作PF∥AC交BC于F,
∴△FPB是等边三角形,
∴BF=PF=PB=AB-AP=4,∠BPF=60°,
∵△PDE是等边三角形,
∴PD=PE,∠DPE=60°,
∴∠BPE=∠FPD,
∴△PBE≌△PFD,
∴BE=DF,
∴BD+BE=BD+DF=BF=4;

(3)如图3,
过点P作PF∥AC交BC于F,
∴∠BPF=∠BAC=70°,∠PFB=∠C,
∵AB=AC,∠BAC=70°,
∴∠ABC=∠C=55°,
∴∠PFB=∠C=∠PBF=55°,
∴PF=PB=a,
∵∠BPF=∠DPE=70°,
∴∠DPF=∠EPB,
∵PD=PE,
∴△PBE≌△PFD,
∴BE=DF,
过点P作PG⊥BC于G,
∴BF=2BG,
在Rt△BPG中,∠PBD=55°,
∴BG=BP•cos∠PBD=a•cos55°,
∴BF=2BG=2a•cos55°,
∴BD-BE=BD-DF=BF=2a•cos55°.

点评 此题是三角形综合题,主要考查了等边三角形的性质和判定,等腰三角形的判定和性质,锐角三角函数,解(1)的关键是判断出△PBE≌△ACD,解(2)的关键是构造出等边三角形,解(3)的关键是构造直角三角形求出BG,是一道中等难度的题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.不等式组$\left\{\begin{array}{l}{\frac{1}{2}x-1≤0}\\{3x+3>0}\end{array}\right.$的解集在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知某正比例函数的图象经过点A (1,3),求此正比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=25度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46两.(注:明代时1斤=16两,故有“半斤八两”这个成语)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,直线AB与CD相交于点O,∠COE=2∠BOE.若∠AOC=120°,则∠DOE等于(  )
A.135°B.140°C.145°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2$\sqrt{3}$,则图中阴影部分的面积为3$\sqrt{3}$-$\frac{3}{2}$π.(结果不取近似值)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)化简:$\frac{{a}^{2}-4}{a+2}$+a+2        
(2)解方程:$\frac{3}{x}$=$\frac{5}{x+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.3-$\sqrt{2}$的倒数是(  )
A.3+$\sqrt{2}$B.-3+$\sqrt{2}$C.$\frac{3+\sqrt{2}}{4}$D.$\frac{3+\sqrt{2}}{7}$

查看答案和解析>>

同步练习册答案