精英家教网 > 初中数学 > 题目详情

【题目】下列说法:①已知直角三角形的面积为4,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5,其中正确结论的序号是(  )

A. 只有①②③ B. 只有①②④ C. 只有③④ D. 只有②③④

【答案】D

【解析】

①已知直角三角形的面积为4,两直角边的比为1:2,设两直角边的长度分别为x,2x,由此即可求出两直角边分别为2、4,然后根据勾股定理可以求出斜边,然后即可判断;
②直角三角形的最大边长为,最短边长为1,根据勾股定理可以求出另一边的长度,就可以判断是否正确;
③在△ABC中,若∠A:∠B:∠C=1:5:6,根据三角形的内角和即可求出各个内角的度数,由此即可判断;
④由于等腰三角形面积为12,底边上的高为4,根据三角形的面积公式可以求出底边,再根据勾股定理即可求出腰长,然后即可判断是否正确.

①已知直角三角形的面积为4,两直角边的比为1:2,设两直角边的长度分别为x,2x,∴x2=4,∴两直角边分别为2、4,∴斜边为2,所以选项错误;
②∵直角三角形的最大边长为,最短边长为1,∴根据勾股定理得第三边为,故选项正确;
③在△ABC中,若∠A:∠B:∠C=1:5:6,∴∠A=15°,∠B=75°,∠C=90°,故选项正确;
④∵等腰三角形面积为12,底边上的高为4,∴底边=2×12÷4=6,底边的一半为3,∴腰长=5,故选项正确.
故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】向右平移个单位长度,再向下平移个单位长度,得到

1)在平面直角坐标系中,画出

2)写出平移后点的坐标:_________).__________).__________);

3)求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题

情景:

试根据图中的信息,解答下列问题:

(1)购买6根跳绳需___________元,购买12根跳绳需_____________元

(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°B=30°,以A为圆心,任意长为半径画弧分别交ABAC于点MN,再分别以MN为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是

ADBAC的平分线;②∠ADC=60°DAB的中垂线上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20171031日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为国家生态园林城市2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.

(1)求甲种树和乙种树的单价;

(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, .求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的坐标分别为,点轴上的一个动点,若点关于直线的对称点恰好落在坐标轴上,则点的坐标为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具商店销售功能相同的AB两种品牌的计算器购买2A品牌和3B品牌的计算器共需156购买3A品牌和1B品牌的计算器共需122

(1)求这两种品牌计算器的单价

(2)学校开学前夕该商店对这两种计算器开展了促销活动具体办法如下A品牌计算器按原价的八折销售B品牌计算器超出5个的部分按原价的七折销售设购买xA品牌的计算器需要y1购买xx>5)个B品牌的计算器需要y2分别求出y1y2关于x的函数关系式

(3)当需要购买50个计算器时买哪种品牌的计算器更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,PAD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PECD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

【答案】1见解析;2

【解析】试题分析:(1) 先证明DOP≌△EOH再利用等量代换得到PE=DH.

(2) DP=x RtBCH中,先用 x表示三角形三边,利用勾股定理列式解方程.

试题解析:

1)解:证明:OD=OED=∠E=90°DOP=∠EOH

∴△DOP≌△EOH

OP=OH

PO+OE=OH+OD

PE=DH.

2)解:设DP=x,则EH=xBH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
束】
25

【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

查看答案和解析>>

同步练习册答案