分析 (1)求出A、B两点坐标,即可解决问题.
(2)连接AC,BC,由tan∠ACO=$\frac{OA}{OC}$=$\frac{2}{4}$=$\frac{1}{2}$,tan∠CBO=$\frac{OC}{OB}$=$\frac{4}{8}$=$\frac{1}{2}$,推出∠ACO=∠CBO,由∠OBC+∠OCB=90°,推出∠ACO+∠OCB=∠ACB=90°,推出AB为⊙D的直径,即可解决问题.
(3)设AE交⊙D于点K,连接BK,作ER⊥x轴于R.由tan∠EAR=$\frac{ER}{AR}$=$\frac{1}{2}$,推出∠EAR=∠ACO,∠CAE=∠EAR+∠CAO=∠ACO+∠CAO=90°,由AB为⊙D直径,推出∠AKB=∠ACB=∠CAK=90°,四边形ACBK为矩形,推出BK=AC,AC2=AO2+OC2=20,推出BK=AC=2$\sqrt{5}$
在Rt△BER中,BE2=BR2=ER2=22+62=40,推出BE=2$\sqrt{10}$,由cos∠KBE=$\frac{BK}{BE}$=$\frac{2\sqrt{5}}{2\sqrt{10}}$=$\frac{\sqrt{2}}{2}$,推出∠KBE=45°,即可解决问题.
解答 解:(1)把y=0代入y=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4,即-$\frac{1}{4}$x2+$\frac{3}{2}$x+4=0,解得:x=8或2,
∴A(-2,0),B(8,0),
∴OA=2,BO=8,
∴AB=10,
(2)连接AC,BC,
把x=0代入y=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4,得y=4,
∴C(0,4),
∴OC=4,
∵tan∠ACO=$\frac{OA}{OC}$=$\frac{2}{4}$=$\frac{1}{2}$,tan∠CBO=$\frac{OC}{OB}$=$\frac{4}{8}$=$\frac{1}{2}$,
∴∠ACO=∠CBO,
∵∠OBC+∠OCB=90°,
∴∠ACO+∠OCB=∠ACB=90°
∴AB为⊙D的直径,
∵AD=BD=5,
∴OD=3,
∴D(3,0).
(3)设AE交⊙D于点K,连接BK,作ER⊥x轴于R.
∵点E的横坐标为10,∴把x=10代入y=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4,y=-6,
∴E(10,-6),
∴ER=6,OR=10,
∴AR=12,
∴tan∠EAR=$\frac{ER}{AR}$=$\frac{1}{2}$,
∴∠EAR=∠ACO,
∴∠CAE=∠EAR+∠CAO=∠ACO+∠CAO=90°
∵AB为⊙D直径∠AKB=∠ACB=∠CAK=90°
∴四边形ACBK为矩形,
∴BK=AC,AC2=AO2+OC2=20,
∴BK=AC=2$\sqrt{5}$
在Rt△BER中,BE2=BR2=ER2=22+62=40,
∴BE=2$\sqrt{10}$,
∴cos∠KBE=$\frac{BK}{BE}$=$\frac{2\sqrt{5}}{2\sqrt{10}}$=$\frac{\sqrt{2}}{2}$,
∴∠KBE=45°,
∴∠AEB=∠AKB-∠KBE=45°.
点评 本题考查圆综合题、二次函数的应用、锐角三角函数、矩形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,属于中考压轴题.
科目:初中数学 来源: 题型:选择题
A. | 4个 | B. | 6个 | C. | 8个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com