4£®ÔĶÁÏÂÃæÒ»¶Î»°£¬Íê³ÉÏÂÁи÷СÌ⣮

£¨1£©Èç¹ûµãAËù±íʾµÄÊýÊÇ5£¬´ÓµãA³ö·¢£¬ÑØÊýÖáÏÈÏòÓÒÒƶ¯2¸öµ¥Î»³¤¶È£¬ÔÙÏò×óÒƶ¯17¸öµ¥Î»³¤¶Èµ½´ïµãB£¬ÔòµãBËù±íʾµÄÊýÊÇ-10£¬´ËʱµãAÓëµãBÖ®¼äµÄ¾àÀëΪ15£»
£¨2£©Èç¹ûµãA±íʾÊýÊÇ-4£¬´ÓµãA³ö·¢£¬ÑØÊýÖáÏÈÏòÓÒÒƶ¯20¸öµ¥Î»³¤¶È£¬ÔÙÏò×óÒƶ¯8¸öµ¥Î»³¤¶Èµ½´ïµãB£¬ÔòµãBËù±íʾµÄÊýÊÇ8£¬´ËʱµãAÓëµãBÖ®¼äµÄ¾àÀëΪ12£»
£¨3£©Ò»°ãµØ£¬Èç¹ûµãAËù±íʾµÄÊýÊÇa£¬´ÓµãA³ö·¢£¬ÑØÊýÖáÏÈÏòÓÒÒƶ¯9¸öµ¥Î»³¤¶È£¬ÔÙÏò×óÒƶ¯3¸öµ¥Î»³¤¶Èµ½´ïµãB£®Çó£º
¢ÙµãBËù±íʾµÄÊý£»
¢ÚµãAÓëµãBÖ®¼äµÄ¾àÀ룮

·ÖÎö ÀûÓÃÊýÖáÉϵãµÄÒƶ¯¹æÂÉ£º×ó¼õÓÒ¼Ó£¬¿ÉµÃ½á¹û£®

½â´ð ½â£º£¨1£©5+2-17=-10£¬|AB|=|5-£¨-10£©|=15£¬
BËù±íʾµÄÊýÊÇ2£¬´ËʱµãAÓëµãBÖ®¼äµÄ¾àÀëΪ15£¬
¹Ê´ð°¸Îª£º-10£¬15£»

£¨2£©-4+20-8=8£¬|AB|=|8-£¨-4£©|=12£¬
BËù±íʾµÄÊýÊÇ8£¬´ËʱµãAÓëµãBÖ®¼äµÄ¾àÀëΪ12£¬
¹Ê´ð°¸Îª£º8£¬12£»

£¨3£©a+9-3=a+6£¬|AB|=|a+6-a|=6£¬
BËù±íʾµÄÊýÊÇa+6£¬´ËʱµãAÓëµãBÖ®¼äµÄ¾àÀëΪ6£¬
¹Ê´ð°¸Îª£ºa+6£¬6£®

µãÆÀ ±¾Ì⿼²éÊýÖáµÄÔËÓã¬ÕÆÎÕÊýÖáÉϵãµÄÒƶ¯¹æÂÉ£º×ó¼õÓÒ¼ÓÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³¹¤³§Ò»Öܼƻ®Ã¿ÌìÉú²úµç¶¯³µ80Á¾£¬ÓÉÓÚ¹¤ÈËʵÐÐÂÖÐÝ£¬Ã¿ÌìÉÏ°àÈËÊý²»Í¬£¬Êµ¼ÊÿÌìÉú²úÁ¿Óë¼Æ»®Á¿Ïà±ÈÇé¿öÈç±í£¨Ôö¼ÓµÄΪÕýÊý£¬¼õÉÙµÄΪ¸ºÊý£©£º
ÈÕÆÚÒ»¶þÈýËÄÎåÁùÈÕ
Ôö¼õÊý/Á¾+4-1+2-2+6-3-5
£¨1£©Éú²úÁ¿×î¶àµÄÒ»Ìì±ÈÉú²úÁ¿×îÉÙµÄÒ»Ìì¶àÉú²ú¶àÉÙÁ¾µç¶¯³µ£¿
£¨2£©±¾ÖÜ×ÜÉú²úÁ¿ÊǶàÉÙÁ¾£¿±ÈÔ­¼Æ»®Ôö¼ÓÁË»¹ÊǼõÉÙÁË£¿Ôö¼Ó»ò¼õÉÙ¶àÉÙÁ¾£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬AD=AE£¬AB=AC£¬ÇóÖ¤£ºBD=CE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆËã
£¨1£©£¨$\frac{-2a}{b}$£©2¡Â2ab-3£»                
£¨2£©£¨$\frac{1}{{x}^{2}-1}$+1£©•$\frac{{x}^{2}-2x+1}{{x}^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÅ×ÎïÏßC1£ºy=x2-2mx+m2+m+1£¨m£¾1£©µÄ¶¥µãΪA£¬Å×ÎïÏßC2µÄ¶Ô³ÆÖáÊÇÖ±Ïßx=-1£¬¶¥µãΪµãB£¬ÇÒÅ×ÎïÏßC1ºÍC2¹ØÓÚQ£¨1£¬$\frac{1}{2}$£©³ÉÖÐÐĶԳƣ®
£¨1£©ÇóÅ×ÎïÏßC1µÄ¶¥µã×ø±ê£¨ÓÃmµÄ´úÊýʽ±íʾ£©£»
£¨2£©ÇómµÄÖµºÍÅ×ÎïÏßC2µÄ½âÎöʽ£»
£¨3£©¹ýµãA¡¢B·Ö±ð×÷AC¡ÍxÖᣬBD¡ÍxÖᣬµãC¡¢DΪ´¹×㣬Èç¹ûPÊÇxÖáÉϵĵ㣬ÇÒÁ¬½áPA¡¢PBºóËüÃÇÓëAC¡¢BD¼°xÖáËùΧ³ÉµÄÁ½¸öÈý½ÇÐΣ¨¡÷PACºÍ¡÷PBD£©ÏàËÆ£¬ÇóËùÓзûºÏÉÏÊöÌõ¼þµÄµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÇóÏÂÁи÷ʽµÄÖµ
£¨1£©$\sqrt{6{1}^{2}-6{0}^{2}}$£»
£¨2£©$\sqrt{0.09}$+$\sqrt{0.64}$£»
£¨3£©$\frac{1}{3}$$\sqrt{0.36}$+$\frac{1}{6}$$\sqrt{900}$£»
£¨4£©$\sqrt{625}$¡Á$\sqrt{\frac{1}{25}}$+3¡Á$\sqrt{\frac{1}{9}}$+$\sqrt{0}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®»¯¼ò£º
£¨1£©6x2y+2xy-8x2y2-4y-5xy+2x2y2-6x2y£»
£¨2£©2£¨4x-6y£©-3£¨2x+3y-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Éèx1£¬x2ÊÇ·½³Ì2x2-6x-1=0µÄÁ½¸öʵÊý¸ù£¬²»½â·½³Ì£¬ÇóÏÂÁдúÊýʽµÄÖµ£®
£¨1£©x12+x22£»
£¨2£©£¨x1-1£©£¨x2-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ò»Ôª¶þ´Î·½³Ìx2+2x+2=0¸ùµÄÇé¿öÊÇ£¨¡¡¡¡£©
A£®Ã»ÓÐʵÊý¸ùB£®ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù
C£®ÓÐÁ½¸öÏàµÈµÄʵÊý¸ùD£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸