精英家教网 > 初中数学 > 题目详情
6.计算:3×(2-$\sqrt{3}$)+$\root{3}{\frac{8}{27}}$-|-$\frac{1}{3}$|-|2-$\sqrt{3}$|

分析 原式第一项利用乘法法则计算,第二项利用立方根定义计算,第三、四项利用绝对值的代数意义化简,计算即可得到结果.

解答 解:原式=6-3$\sqrt{3}$+$\frac{2}{3}$-$\frac{1}{3}$-2+$\sqrt{3}$
=4$\frac{1}{3}$-2$\sqrt{3}$.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,在平面坐标系中,点A(2,1)、B(6,2)、C(6,5)、D(2,4).
(1)连接AC,BD交于点E,求E的坐标;
(2)是否存在过点M(-2,0)的直线,将四边形ABCD的面积平分?若存在,请求出直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.画出下列反比例函数的图象.
(1)y=-$\frac{3}{x}$;
(2)y=$\frac{1}{3x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,两个一次函数y=x,y=-2x+12的图象相交于点A,动点E从O出发,沿OA方向以每秒1个单位的速度运动,作EF∥y轴与直线BC交于点F,以EF为一边向x轴负方向作正方形EFMN,设正方形EFMN与△AOC的重叠部分的面积为S.
(1)求点A的坐标;
(2)当点E在线段OA上运动时,求出S与运动时间t(秒)的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,E、F分别为平行四边形ABCD中AB、CD的中点,BG⊥AF于G,
(1)AF与CE有什么关系,证明你的结论;
(2)求证:CB=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=5}\\{y=-2}\end{array}\right.$,则方程组$\left\{\begin{array}{l}{{a}_{1}(x-3)+{b}_{1}(y+1)={c}_{1}}\\{{a}_{2}(x-3)+{b}_{2}(y+1)={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=8}\\{y=-3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知△ABC和△ADE为等腰三角形,且∠BAC=∠DAE=α,△BAD≌△EAD,BD=CE,则直线BD与CE的夹角为α.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为α.
(1)当点D′恰好落在EF边上时,求旋转角α的值;
(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,已知CD是⊙O的直径,∠EOD=75°,AE交⊙O于B,且AB=OC,则∠A的度数为25°.

查看答案和解析>>

同步练习册答案