精英家教网 > 初中数学 > 题目详情
如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正确结论的序号是(  )
A.①②③④B.只有①②③C.只有①③④D.只有②④

①∵△ABC是等腰三角形,∴AB=
2
AC,故①正确;
②连接CT;
由勾股定理得:CM2-MT2=CT2,NC2-NT2=CT2
联立两式可得:CM2-MT2=NC2-NT2,即CM2+TN2=NC2+MT2
故②正确;
③如图,过C作∠NCD=∠BCN,且CD=CB=AC,连接DM、DN;
∵∠DCN=∠BCN,CD=BC,CN=CN,
∴△DCN≌△BCN,得BN=DN,∠NDC=∠B=45°;
∵∠MCN=45°,∠ACB=90°,
∴∠ACM=∠DCM=45°-∠BCN=45°-∠DCN,
又∵AC=DC,CM=CM,
∴△ACM≌△DCM,得DM=AM,∠MDC=∠A=45°;
∴∠MDN=45°+∠45°=90°,
在Rt△MDN中,由勾股定理得:DM2+DN2=MN2,即AM2+BN2=MN2
故③正确;
④S△ACM=
1
2
AM•CT,S△BNC=
1
2
BN•CT,S△MNC=
1
2
MN•CT,
∵AM+BN≠MN,∴S△ACM+S△BCN≠S△MNC
故④错误;
因此正确的结论是①②③,故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图,线段AB、DE表示一个斜靠在墙上的梯子的两个不同的位置,若CB=3m,∠ABC=45°,要使∠EDC=60°,则需BD=______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,四边形ABCD中,∠ABC=∠ADB=90°,CE⊥BD于E,AB=5,AD=3,BC=2
3
,求四边形ABCD的面积S四边形ABCD

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

伽菲尔德( Garfield,1881年任美国第20届总统)利用“三个直角三角形的面积和等于一个直角梯形的面积”(如图所示)证明了勾股定理,请你应用此图证明勾股定理.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=
3
4
x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是
3
2
.求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,从电线杆离地面6m处向地面拉一条长10m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在A岛附近,半径约为250km的范围内是暗礁区,往北300km处有一灯塔B,往西400千米处有一灯塔C,现有一渔船沿CB航行,渔船是否会进入暗礁区?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角坐标系中,点P(-3,2)到原点的距离是______.

查看答案和解析>>

同步练习册答案