【题目】如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB= .
(1)若tan∠ABE =2,求CF的长;
(2)求证:BG=DH.
【答案】
(1)解:∵四边形ABCD是平行四边形,
∴∠CDF=∠ABE,DC=AB= ,
∵tan∠ABE=2,
∴tan∠CDF=2,∵CF⊥AD,
∴△CFD是直角三角形,
∴ =2,设DF=x,则CF=2x,
在Rt△CFD中,由勾股定理可得(2x)2+x2=( )2,
解得x=2或x=﹣2(舍去),
∴CF=4;
(2)解:证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADB=∠CBD,
∵AE⊥BC,CF⊥AD,∴AE⊥AD,CF⊥BC,
∴∠GAD=∠HCB=90°,
∴△AGD≌△CHB,
∴BH=DG,
∴BG=DH.
【解析】(1)由平行四边形的性质,结合三角函数的定义,在Rt△CFD中,可求得CF=2DF,再利用勾股定理可求得CF的长。
(2)利用平行四边形的性质结合条件可证得△AGD≌△CHB,则可求得BH=DG,从而可证得BG=DH。
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线 l1∥l2,l3 和 l1,l2 分别交于 C,D 两点,点 A,B 分别在线 l1,l2 上,且位于 l3 的左 侧,点 P 在直线 l3 上,且不和点 C,D 重合.
(1)如图 1,有一动点 P 在线段 CD 之间运动时,试确定∠1、∠2、∠3 之间的关系,并给出证明;
(2)如图 2,当动点 P 在线段 CD 之外运动时,上述的结论是否成立?若不成立,并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例函数 的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,为边上的一点,,动点从点出发,以每秒1个单位的速度沿着边向终点运动,连接.设点运动的时间为秒.
(1)求的长;
(2)当为多少秒时,是直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,平分交于点,给出以下结论:①为等腰直角三角形;②为等边三角形;③;④⑤是的中位线.其中正确的结论有( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1个单位长度,其行走的路线如图所示,第1次移动到A1,第2次移动到A2……,第n次移动到An,则三角形OA2A2018的面积是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com