精英家教网 > 初中数学 > 题目详情
(2012•乐山模拟)如图,在Rt△ABC中,∠C=90°,两直角边AC、BC的长恰是方程x2-4x+2=0的两个不同的根,则Rt△ABC的斜边上的高线CD的长为(  )
分析:先利用根与系数的关系得到AC+BC=4和AC•BC=2,再把AC+BC=4两边平方,得到AC2+BC2的值,由勾股定理可得AB2=AC2+BC2,从而求出斜边AB的值,又因为S△ABC=
1
2
AC•BC=
1
2
AB×CD,所以把已知数据代入可求出CD的长.
解答:解:∵两直角边AC、BC的长恰是方程x2-4x+2=0的两个不同的根,
∴AC+BC=-
b
a
=4,AC•BC=
c
a
=2,
∴(AC+BC)2=16,
∴AC2+BC2+2AC•BC=16,
∴AC2+BC2=16-2AC•BC=12,
∵∠C=90°,
∴AB2=AC2+BC2=12,
∴AB=
12
=2
3

∵S△ABC=
1
2
AC•BC=
1
2
AB×CD,
1
2
×2=
1
2
×2
3
×CD,
∴CD=
3
3

故选A.
点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-
b
a
,x1x2=
c
a
和勾股定理以及三角形的面积公式的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•乐山模拟)在5,4,3,-2这四个数中,任选两个数的积作为k的值,使反比例函数y=
k
x
的图象在第二、四象限的概率是
1
2
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山模拟)点P(-1,2)关于x轴的对称点的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山模拟)函数y=
4+2x
中自变量x的取值范围是
x≥-2
x≥-2

查看答案和解析>>

同步练习册答案