A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
分析 利用垂径定理根据勾股定理即可求得弦AB的长;利用相应的三角函数可求得∠AOB的度数,进而可求优弧AB的长度,除以2π即为圆锥的底面半径.
解答 解:连接OP,则OP⊥AB,AB=2AP,
∴AB=2AP=2×$\sqrt{{2}^{2}{-1}^{2}}$=2$\sqrt{3}$,
∴sin∠AOP=$\frac{\sqrt{3}}{2}$,
∴∠AOP=60°,
∴∠AOB=2∠AOP=120°,
∴优弧AB的长为:$\frac{240π×2}{180}$=$\frac{8}{3}$π,
∴圆锥的底面半径为:$\frac{8}{3}$π÷2=$\frac{4}{3}$.
故选B.
点评 本题综合考查了垂径定理,勾股定理,相应的三角函数,圆锥的弧长等于底面周长等知识点.综合利用定理解题是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com