精英家教网 > 初中数学 > 题目详情
(2009•淄博)如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;
(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.

【答案】分析:(1)以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.
(2)以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.
(3)如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.
解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.
①当点P与点N重合时,由x2+2x=20,得x1=-1,x2=--1(舍去).
因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.
所以x=-1符合题意.
②当点Q与点M重合时,由x+3x=20,得x=5.
此时DN=x2=25>20,不符合题意.
故点Q与点M不能重合.
所以所求x的值为-1.

(2)由(1)知,点Q只能在点M的左侧,
①当点P在点N的左侧时,
由20-(x+3x)=20-(2x+x2),
解得x1=0(舍去),x2=2.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,
由20-(x+3x)=(2x+x2)-20,
解得x1=-10(舍去),x2=4.
当x=4时四边形NQMP是平行四边形.
所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.

(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.
由于2x>x,
所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形,
则点F一定在点N的右侧,且PE=NF,
即2x-x=x2-3x.
解得x1=0(舍去),x2=4.
由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,
所以以P,Q,M,N为顶点的四边形不能为等腰梯形.
点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2009•淄博)如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.
(1)求抛物线的表达式;
(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;
(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《反比例函数》(02)(解析版) 题型:选择题

(2009•淄博)如图,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,利用函数图象判断不等式<kx+b的解集为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:选择题

(2009•淄博)如图,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,利用函数图象判断不等式<kx+b的解集为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学三轮复习每天30分综合训练(18)(解析版) 题型:选择题

(2009•淄博)如图,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,利用函数图象判断不等式<kx+b的解集为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2009年山东省淄博市中考数学试卷(解析版) 题型:解答题

(2009•淄博)如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.
(1)求抛物线的表达式;
(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;
(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.

查看答案和解析>>

同步练习册答案