精英家教网 > 初中数学 > 题目详情

【题目】如图,已知锐角ABC内接于⊙O,连接AO并延长交BC于点D

1)求证:ACB+BAD=90°

2)过点DDEABE,若∠ADC=2ACB.求证:AC=2DE.

【答案】(1)证明见解析;(2)证明见解析

【解析】试题分析:(1)延长AD交⊙O于点F,连接BF.根据直径对的圆周角是直角得出∠ABF=90°AFB +BAD=90°,同弧所对的圆周角相等∠AFB=ACB,即可证明.

2)如图2中,过点OOHACH,连接BO证明即可解决问题.

试题解析:1)证明:延长AD交⊙O于点F,连接BF

AF为⊙O的直径,

∴∠ABF=90°

∴∠AFB +BAD=90°

∵∠AFB=ACB

∴∠ACB+BAD=90°

2)证明:如图2中,过点OOHACH,连接BO

∵∠AOB=2ACB

ADC=2ACB

∴∠AOB=ADC

∴∠BOD=BDO

BD=BO

BD=OA,

∵∠BED=AHOABD=AOH

∴△BDE≌△AOH

DE=AH

OHAC

AH=CH=ACAC=2DE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD为矩形的四个顶点AB=16cmAD=6cm动点PQ分别从点AC同时出发P3cm/s的速度向点B移动一直到达B为止Q2 cm/s的速度向D移动

(1)PQ两点从出发开始到几秒?四边形PBCQ的面积为33cm2

(2)PQ两点从出发开始到几秒时?点P和点Q的距离是10cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一次函数的图象分别交x轴、y轴于点A,B,与反比例函数图象在第二象限交于点C(m,6),轴于点D,OA=OD.

(1)求m的值和一次函数的表达式;

(2)在X轴上求点P,使CAP为等腰三角形(求出所有符合条件的点)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形 ABCD 的一条边 AD=8,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处.

1)求证:△OCP∽△PDA

2)若△OCP 与△PDA 的面积比为 14,求边 AB 的长;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图Rt△ABCACB=90°AD平分∠BACBC于点DOAB边上一点O为圆心作⊙O且经过AD两点AB于点E

1)求证BC是⊙O的切线

2AC=2AB=6BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).

(1) 求该二次函数的解析式并写出其对称轴;

(2) 已知点P(2 , -2),连结OP , x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.

(1)求证:CE⊥AB;

(2)求证:PC是⊙O的切线;

(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习掷硬币的概率时,老师说:掷一枚质地均匀的硬币,正面朝上的概率是,小明做了下列三个模拟实验来验证.

取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;

把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;

将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值. 上面的实验中,不科学的有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案