精英家教网 > 初中数学 > 题目详情
8.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.
(1)依题意补全图形;
(2)连接BF交AE于点O,判断四边形AECG的形状并证明;
(3)若BC=10,AB=$\frac{20}{3}$,求CF的长.

分析 (1)结合题意即可补全图形;
(2)由折叠的性质可得点O是BF中点,又由E是BC边的中点,可得EO是△BCF的中位线,即可判定EO∥CG.又由AG∥CE,即可得四边形AECG是平行四边形;
(3)首先由勾股定理求得AE的长,然后由三角形的面积相等,求得BO的长,继而求得BF的长,又由勾股定理,求得答案.

解答1)解:依题意补全图形,如图1;

(2)四边形AECG是平行四边形.
证明:如图2,依翻折的性质可知,点O是BF中点,
∵E是BC中点,
∴EO∥CG.
∵AG∥CE,
∴四边形AECG是平行四边形.

(3)解:在Rt△ABE中,BE=$\frac{1}{2}$BC=$\frac{1}{2}$×10=5,AB=$\frac{20}{3}$,
∴AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=$\frac{25}{3}$.
∵S△ABE=$\frac{1}{2}$AB•BE=$\frac{1}{2}$AE•BO,
∴BO=4.
∴BF=2BO=8.
∵BF⊥AE,AE∥CG,
∴∠BFC=90°.
∴CF=$\sqrt{B{C}^{2}-B{F}^{2}}$=6.

点评 此题考查了矩形的性质、平行四边形的判定、折叠的性质以及勾股定理等知识.注意结合题意准确画出图形,利用面积法求解是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知方程组$\left\{\begin{array}{l}{ax+5y=15(1)}\\{4x-by=-2(2)}\end{array}\right.$,由于甲看错了方程(1)中的 a 得到方程组的解为$\left\{\begin{array}{l}{x=-3}\\{y=1}\end{array}\right.$,乙看错了方程(2)中的 b 得到方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$.若按正确的 a、b 计算,求原方程组的解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.为了备战2016年里约奥运会,中国射击队正在积极训练.甲、乙两名运动员在相同的条件下,各射击10次.经过计算,甲、乙两人成绩的平均数均是9.5环,甲的成绩方差是0.125,乙的成绩的方差是0.85,那么这10次射击中,甲、乙成绩的稳定情况是(  )
A.甲较为稳定B.乙较为稳定
C.两个人成绩一样稳定D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在校体育集训队中,跳高运动员小军和小明的9次成绩如下:(单位:m)
小军:1.41、1.42、1.42、1.43、1.43、1.43、1.44、1.44、1.45
小明:1.38、1.38、1.39、1.41、1.43、1.45、1.47、1.48、1.48
(1)小军成绩的众数是1.43.
(2)小明成绩的中位数是1.43.
(3)只能有一人代表学校参赛.两人的平均成绩都是1.43,因为小军(填人名)的成绩稳定,所以体育老师选该同学参赛.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在平面直角坐标系中.点P(1,-2)关于x轴对称的点的坐标是(  )
A.(1,2)B.(-1,-2)C.(-1,2)D.(-2,1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在菱形ABCD中,∠ABC=120°,点E是边AB的中点,P是对角线AC上的一个动点,若AB=2,则PB+PE的最小值是(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.
小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.
下面是小南的探究过程:
(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整;
已知:如图,在筝形ABCD中,AB=AD,CB=CD.
求证:∠B=∠D.
证明:连接AC,
在△ABC和△ADC中,
$\left\{\begin{array}{l}\;AB=AD\\ \;BC=DC\\ AC=AC\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠B=∠D
由以上证明可得,筝形的角的性质是:筝形有一组对角相等.
(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):筝形的两条对角线互相垂直.
(3)筝形的定义是判定一个四边形为筝形的方法之一.从边、角、对角线或性质的逆命题等角度可以进一步探究筝形的判定方法,请你写出筝形的一个判定方法(定义除外),并说明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.函数$y=\frac{2x-6}{x+1}$的自变量x的取值范围是x≠-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算或化简:
(1)(-$\frac{1}{2}$)0+(-2)3+($\frac{1}{2}$)-1+2            
(2)2m•m2+(2m32÷m3
(3)(x+1)2-(-x-2)(-x+2)
(4)(2a-b+3)(2a+b-3)

查看答案和解析>>

同步练习册答案