精英家教网 > 初中数学 > 题目详情
精英家教网在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距
 
cm.
分析:根据旋转的性质可知,点B′与B重合,那么点B′与点B的原来位置的距离是2OB,由勾股定理可得OB的大小.
解答:精英家教网解:如图,∵∠C=90°,BC=2cm,O为AC的中点,
∴OB=
5

∵根据旋转的性质可知,点B与B′重合,
∴点B′与点B的原来位置的距离B′B=2
5
cm.
故答案为2
5
点评:此题主要考查等腰直角三角形的性质和旋转的性质,得出BB′=2OB是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、在等腰三角形ABC中∠A=40°,则∠B=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:在等腰三角形ABC中,AB=AC,∠A=40°,则∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在等腰三角形ABC中,AB=AC=13cm,底边BC=10cm,求底边上的高AD和△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,两底角的平分线BE和CD相交于点0,则△OBC是
等腰
等腰
三角形.

查看答案和解析>>

同步练习册答案