【题目】在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线y与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标
(1)求点B的坐标;
(2)当点P的横坐标为2时,求k的值;
(3)连接PO,记△POB的面积为S.若,结合函数图象,直接写出k的取值范围.
【答案】(1)点B的坐标为(0,2);(2)k的值为8;(3)k<3.
【解析】
(1)有点A的坐标,可求出直线的解析式,再由解析式求出B点坐标.
(2)把点P的横坐标代入直线解析式即可求得点P的纵坐标,然后把点P代入反比例函数解析式即可得k值.
(3)根据△POB的面积为S的取值范围求点P的横坐标取值,然后把横坐标代入直线解析式,即可求得点P纵坐标的取值范围,进而求得k的取值范围.
解:(1)∵直线l:y=x+b与x轴交于点A(﹣2,0)
∴﹣2+b=0
∴b=2
∴一次函数解析式为:y=x+2
∴直线l与y轴交于点B为(0,2)
∴点B的坐标为(0,2);
(2)∵双曲线y与直线l交于P,Q两点
∴点P在直线l上
∴当点P的横坐标为2时,y=2+2=4
∴点P的坐标为(2,4)
∴k=2×4=8
∴k的值为8
(3)如图:
S△BOP2×xp=xp,
∵,
∴xp<1,
∴yp<3,
∴k<3
科目:初中数学 来源: 题型:
【题目】完成一件事有几类办法,各类办法相互独立,每类办法中又有多种不同的办法,则完成这件事的不同办法数是各类不同方法种数的和,这就是分类计数原理,也叫做加法原理.完成一件事,需要分成几个步骤,每一步的完成有多种不同的方法,则完成这件事的不同方法种数是各种不同的方法数的乘积,这就是分步计数原理,也叫做乘法原理.
小王同学参加某高中学校进行的自主招生考试,本次考试共有1000人参加.
(1)1000人参加自招考试,有300人可以享受加分政策,且有10,20,30,60四个档次,小王想获得至少30分的加分,那么概率为多少?
(2)若该高中的中考录取分数线为530分,小王估得中考分数可能在500-509,510-519,520-529三个分段,
①若小王的中考分数在510~519分段,则小王被该高中录取的概率为多少?
②若小王的中考分数在三个分数段对应的概率分别为,,,则小王被该高中录取的概率为多少?
加分 | 人数 |
10 | 30 |
20 | 90 |
30 | 150 |
60 | 30 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面内,给定不在同一直线上的点,,,射线是的平分线,点到点,,的距离均等于(为常数),到点的距离等于的所有点组成图形,图形交射线于点,连接,.
(1)求证:;
(2)过点作直线的垂线,垂足为,作于点,延长交图形于点,连接.若,求直线与图形的公共点个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的点,,给出如下定义:若,为某个三角形的顶点,且边上的高,满足,则称该三角形为点,的“生成三角形”.
(1)已知点;
①若以线段为底的某等腰三角形恰好是点,的“生成三角形”,求该三角形的腰长;
②若是点,的“生成三角形”,且点在轴上,点在直线上,则点的坐标为______;
(2)的圆心为点,半径为2,点的坐标为,为直线上一点,若存在,是点,的“生成三角形”,且边与有公共点,直接写出点的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在开展 “校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.
(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?
(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组 请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得_______________;
(Ⅱ)解不等式②,得_______________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠BAD=,求AD的长;
(3)试探究FB、FD、FA之间的关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com