精英家教网 > 初中数学 > 题目详情
已知一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则有x1+x2=-
b
a
;x1x2=
c
a

请应用以上结论解答下列问题:
已知方程x2-4x-1=0有两个实数根x1,x2,要求不解方程,
求值:(1)(x1+1)(x2+1)       (2)
x2
x1
+
x1
x2
分析:根据根与系数的关系,求出x1+x2和x1x2的值,(1)去掉括号,得到x1+x2和x1x2的形式,求出代数式的值.(2)先通分,再用完全平方公式,把代数式化为含有x1+x2和x1x2的形式,然后求出代数式的值.
解答:解:x1+x2=-
b
a
=4;x1x2=
c
a
=-1,
(1)(x1+1)(x2+1),
=x1x2+x1+x2+1,
=-1+4+1,
=4;

(2)
x2
x1
+
x1
x2

=
x1 2+x2
x1x2
2
=
(x1 +x2)2-2x1x2
x1x2

=-18.
点评:本题考查的是一元二次方程的根与系数的关系,根据根与系数的关系求出两根的和与两根的积,(1)通过去括号得到含有两根和与两根积的形式,然后求出代数式的值.(2)通过通分和利用完全平方公式,把代数式化为含有两根和与两根积的形式,然后求出代数式的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•西城区一模)已知一元二次方程x2+ax+a-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为
13
时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
3
13
2
?若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2+ax+b=0①,x2+bx+a=0②,方程①与方程②有且只有一个公共根,则a与b之间应满足的关系式为
a+b+1=0
a+b+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2axa-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012届北京市西城区九年级一模数学卷(解析版) 题型:解答题

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

同步练习册答案