精英家教网 > 初中数学 > 题目详情
2.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB边上,OM、ON分别交边AC、BC于点P、Q,∠MON绕点O任意旋转.当$\frac{OA}{OB}=\frac{1}{2}$时,$\frac{OP}{OQ}$的值为 ______;当$\frac{OA}{OB}=\frac{1}{n}$时,$\frac{OP}{OQ}$的值为 ______(用含n的式子表示).其中正确的选项是(  )
A.$\frac{\sqrt{3}}{2};\frac{\sqrt{3}}{n}$B.$\frac{\sqrt{3}}{n};\frac{\sqrt{3}}{n}$C.$\frac{\sqrt{3}}{2};\sqrt{3}$D.$\sqrt{3}$;$\frac{\sqrt{3}}{n}$

分析 作OD⊥AC于D,OE⊥BC于E,由OD∥BC,OE∥AC易得△AOD∽△ABC,△BOE∽△BAC,根据相似的性质得$\frac{OD}{BC}$=$\frac{AO}{AB}$,$\frac{OE}{AC}$=$\frac{OB}{BA}$,由于$\frac{OA}{OB}$=$\frac{1}{n}$,则$\frac{OA}{AB}$=$\frac{1}{n+1}$,$\frac{OB}{AB}$=$\frac{n}{n+1}$,所以$\frac{OD}{OE}$=$\frac{BC}{n•AC}$,在Rt△ABC中,利用正切的定义得tanB=tan30°=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$,即$\frac{BC}{AC}$$\sqrt{3}$,则$\frac{OD}{OE}$=$\frac{\sqrt{3}}{n}$,利用等角的余角相等得到∠DOP=∠QOE,则Rt△DOP∽Rt△EOQ,$\frac{OP}{OQ}$=$\frac{OD}{OE}$=$\frac{\sqrt{3}}{n}$,且当n=2时$\frac{OA}{OB}$=$\frac{1}{2}$时,$\frac{OP}{OQ}$=$\frac{\sqrt{3}}{2}$.

解答 解:作OD⊥AC于D,OE⊥BC于E,如图,
∵∠ACB=90°,
∴OD∥BC,OE∥AC,
∴△AOD∽△ABC,△BOE∽△BAC,
∴$\frac{OD}{BC}$=$\frac{AO}{AB}$,$\frac{OE}{AC}$=$\frac{OB}{BA}$,
∵$\frac{OA}{OB}$=$\frac{1}{n}$,
∴$\frac{OA}{AB}$=$\frac{1}{n+1}$,$\frac{OB}{AB}$$\frac{n}{n+1}$,
∴$\frac{OD}{BC}$=$\frac{1}{n+1}$,$\frac{OE}{AC}$=$\frac{n}{n+1}$,
∴$\frac{OD}{OE}$=$\frac{BC}{n•AC}$,
在Rt△ABC中,利用正切的定义得tanB=tan30°=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$,$\frac{BC}{AC}$$\sqrt{3}$,
∴$\frac{OD}{OE}$=$\frac{\sqrt{3}}{n}$,
∵∠POQ=90°,
而∠DOE=90°,
∴∠DOP=∠QOE,
∴Rt△DOP∽Rt△EOQ,
∴$\frac{OP}{OQ}$=$\frac{OD}{OE}$=$\frac{\sqrt{3}}{n}$,
即$\frac{OA}{OB}$=$\frac{1}{2}$时,$\frac{OP}{OQ}$=$\frac{\sqrt{3}}{2}$,
故选A.

点评 本题考查了相似三角形的判定与性质:平行于三角形一边的直线与其他两边所截的三角形与原三角形相似;有两组角对应相等的两个三角形相似;相似三角形对应边的比相等,都等于相似比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.甲、乙两人在一条长为500m的直线跑道上同起点、同向匀速跑步,已知甲先出发2s后乙再出发,先到终点的人原地休息,如图表示的是甲、乙两人之间的距离y(m)与乙出发的时间t(s)的函数关系,给出以下结论:①a=8;②b=92;③c=23,其中正确的是(  )
A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在平面直角坐标系中,点P(-3,a2+1)所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知一个三角形的三条边的长分别为$\sqrt{3}$、$\sqrt{5}$和$\sqrt{8}$,那么这个三角形的最大内角度数为90°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则点P的坐标是(  )
A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-5)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如本题图①,在△ABC中,已知∠ABC=∠ACB=α.过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.
(1)求∠ACD的大小;
(2)在线段CD的延长线上取一点F,以FD为角的一边作∠DFE=α,另一边交BD延长线于点E,若FD-kAD(如本题图②所示),试求$\frac{{S}_{△DEF}}{{S}_{△BCD}}$的值(用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,抛物线y=ax2+bx-2经过A、B;两点(点A在点B的左侧),交y轴于点C.已知A(-1,0),B(3,0).
(1)求抛物线及直线BC的表达式;
(2)直线n与y轴平行,分别交抛物线、直线BC和x轴于点D、F、E.若直线n在O、B之间平移,设点E(m,0),FD=h.当m为何值时,h的值最大?并求出它的最大值;
(3)在抛物线上是否存在一点P,使△PCB是以点C为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.若xm=3,xn=5,则xm+n=15.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知∠1=∠2,∠D=55°,求∠B的度数.

查看答案和解析>>

同步练习册答案