精英家教网 > 初中数学 > 题目详情
(2009•烟台)如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

【答案】分析:(1)依题意联立方程组求出a,b的值后可求出函数表达式.
(2)分别令x=0,y=0求出A、B、C三点的坐标,然后易求直线CM的解析式.证明四边形ANCP为平行四边形可求出点P的坐标.
(3)求出直线y=-x+3与坐标轴的交点D,B的坐标.然后证明∠AFE=∠ABE=45°,AE=AF,可证得三角形AEF是等腰直角三角形.
(4)根据(3)中所求,即可得出当E是直线y=-x+3上任意一点时,(3)中的结论仍成立.
解答:解:(1)根据题意,得
解得
∴抛物线对应的函数表达式为y=x2-2x-3;

(2)存在.连接AP,CP,
如下图所示:

在y=x2-2x-3中,令x=0,得y=-3.
令y=0,得x2-2x-3=0,
∴x1=-1,x2=3.
∴A(-1,0),B(3,0),C(0,-3).
又y=(x-1)2-4,
∴顶点M(1,-4),
容易求得直线CM的表达式是y=-x-3.
在y=-x-3中,令y=0,得x=-3.
∴N(-3,0),
∴AN=2,
在y=x2-2x-3中,令y=-3,得x1=0,x2=2.
∴CP=2,
∴AN=CP.
∵AN∥CP,
∴四边形ANCP为平行四边形,此时P(2,-3);

(3)
△AEF是等腰直角三角形.
理由:在y=-x+3中,令x=0,得y=3,令y=0,得x=3.
∴直线y=-x+3与坐标轴的交点是D(0,3),B(3,0).
∴OD=OB,
∴∠OBD=45°,
又∵点C(0,-3),
∴OB=OC.
∴∠OBC=45度,
由图知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°,
∴∠EAF=90°,且AE=AF.
∴△AEF是等腰直角三角形;

(4)当点E是直线y=-x+3上任意一点时,(3)中的结论:△AEF是等腰直角三角形成立.
点评:本题综合考查了等腰直角三角形的判定以及二次函数结合图形的应用,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:2010年江苏省苏州市昆山市中考数学二模试卷(解析版) 题型:解答题

(2009•烟台)如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

查看答案和解析>>

科目:初中数学 来源:2010年湖北省宜昌市枝江市雅畈中学九年级中考数学强化训练专题3 二次函数(解析版) 题型:解答题

(2009•烟台)如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

查看答案和解析>>

科目:初中数学 来源:2009年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2009•烟台)如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《三角形》(08)(解析版) 题型:填空题

(2009•烟台)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是    cm.

查看答案和解析>>

同步练习册答案