【题目】一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.
理清思路,本题证明的思路可用下列框图表示:
根据上述思路,请你完成下列问题.
(1)若BP平分∠ABO,其余条件不变.求证:AP=CD.
(2)若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系,并证明得出的关系.
【答案】(1)证明见解析;(2)CD′=AP′,理由见解析.
【解析】
(1)先求出∠3=∠4,再求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;
(2)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.
(1)证明:
∵PB=PD,
∴∠2=∠PBD,
∵AB=BC,∠ABC=90°,
∴∠C=45°,
∵BO⊥AC,
∴∠1=45°,
∴∠1=∠C=45°,
∵∠3=∠PBC∠1,∠4=∠2∠C,
∴∠3=∠4,
∵BP平分∠ABO,
∴∠ABP=∠3,
∴∠ABP=∠4,
在△ABP和△CPD中
∴△ABP≌△CPD(AAS),
∴AP=CD.
(2)解:CD′与AP′的数量关系是CD′=AP′.
理由是:设OP=PC=x,则AO=OC=2x=BO,
则AP=2x+x=3x,
由△OBP≌△EPD,得BO=PE,
PE=2x,CE=2x﹣x=x,
∵∠E=90°,∠ECD=∠ACB=45°,
∴DE=x,由勾股定理得:CD=x,
即AP=3x,CD=x,
∴CD′与AP′的数量关系是CD′=AP′
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣4x+12+m=0.
(1)若方程的一个根是,求m的值及方程的另一根;
(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块形状如图的五边形余料,,,,,.要在这块余料中截取一块矩形材料,其中一边在上,并使所截矩形的面积尽可能大.
(1)若所截矩形材料的一条边是或,求矩形材料的面积;
(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,笑笑和爸爸想要测量直立在地面上的建筑物OP与广告牌AB的高度.首先,笑笑站在离广告牌B处4米的D处看到广告牌AB的顶端A、建筑物OP的顶端O一条直线上;此时,在阳光下,爸爸站在N处,他的影长NE=2.1米,同一时刻,测得建筑物OP的影长为PG=28米,已知建筑物OP与广告牌AB之间的水平距离为11米,笑笑的眼睛到地面的距离CD=1.5米,爸爸的身高MN=1.8米.
(1)请你画出表示建筑物OP在阳光下的影子PG;
(2)求:①建筑物OP的高度;
②广告牌AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:
(1)求两人相遇时小明离家的距离;
(2)求小丽离距离图书馆500m时所用的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点M在BA的延长线上,MD切⊙O于点D,过点B作BN⊥MD于点C,连接AD并延长,交BN于点N.
(1)求证:AB=BN;
(2)若MD=4,CD=2.4,求 。
(3)若AM=2,CN=1.2,求⊙O的半径长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com