精英家教网 > 初中数学 > 题目详情
23、已知:△ABC为等边三角形,D为AB上任意一点,连接CD.
(1)在CD左下方,以BD为一边作等边三角形BDE.(尺规作图,保留作图痕迹,不写作法)
(2)连接AE,求证:CD=AE.
分析:(1)可以分别以B、D为圆心,以BD为半径作弧,相交于E;
(2)由已知条件,证明△BCD≌△EAB即可.
解答:解:(1)如图:

(2)连接AE,
∵AB=BC,∠ABE=∠CBD=60°,BD=BE,
∴△BCD≌△EAB(SAS)
∴CD=AE.
点评:此题主要考查等边三角形的做法以及性质的运用,还涉及到全等三角形的判定,综合性强.求得三角形全等是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,
求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC为等边三角形,D、F分别为射线BC、射线AB边上的点,BD=AF,以AD为边作等边△ADE.
(1)如图①所示,当点D在线段BC上时:
①试说明:△ACD≌△CBF;②判断四边形CDEF的形状,并说明理由;
(2)如图②所示,当点D在BC的延长线上时,判断四边形CDEF的形状,并说明理由.
(3)当点D在射线BC上移动到何处时,∠DEF=30°,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC为等边三角形,边长为2cm,求等边△ABC的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC为等边三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点
(1)观察图中是否有全等三角形?若有,直接写出:
△ABM≌△BCN
△ABM≌△BCN
;(写出一对即可)
(2)求∠BQM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC为等边三角形,D,E,F分别是AB,BC,CA上的点,且AD:DB=BE:EC=CF:FA.△ABC∽
△DEF
△DEF

查看答案和解析>>

同步练习册答案