(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
xkb1.com
w w w .x k b 1.c o m
(1)证明:∵△ABC、△AMN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN.
(2)结论∠ABC=∠ACN仍成立.
理由如下:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,
∠BAC=∠MAN=60°,∴∠BAM=∠CAN,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN.
(3)∠ABC=∠ACN.
理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,
∴底角∠BAC=∠MAN,∴△ABC∽△AMN,
∴=,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,
∴∠BAM=∠CAN,∴△BAM∽△CAN,
∴∠ABC=∠ACN.
科目:初中数学 来源: 题型:
(1)已知二次函数,请你化成的形式,并在直角坐标系中画出的图象;
(2)如果,是(1)中图象上的两点,且,请直接写出、的大小关系;
(3)利用(1)中的图象表示出方程的根来,要求保留画图痕迹,说明结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,圆心B在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1).过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有_______个;它们是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
一个不透明口袋中装有除颜色不同外其它都完全相同的小球,其中白球2个,红球3个,黄球5个,将它们搅匀后从袋中随机摸出1个球,则摸出黄球的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
把多项式x4一8x2+16分解因式,所得结果是( ) (原创)
A.(x-2)2 (x+2)2 B. (x-4)2 (x+4)2 C.(x一4)2 D.(x-4)4
查看答案和解析>>
科目:初中数学 来源: 题型:
如图所示,已知二次函数与坐标轴分别交于A、D、B三点,顶点为C。【原创】
(1)求tan∠BAC
(2)在y轴上是否存在一点P,使得△DOP与△ABC相似,如果存在,求出点P的坐标,如果不存在,说明理由。
(3)Q是抛物线上一动点,使得以A、B、C、Q为端点的四边形是一个梯形,请直接写出满足条件的Q点的坐标。(不要求写出解题过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com