【题目】如图,在△ABC中,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E
(1) 求证:CD=BE
(2) 若AD=3.5 cm,DE=2.7 cm,求BE的长
【答案】(1)见解析;(2) 0.8 cm
【解析】试题分析:(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC;
(2)利用(1)中结论,根据全等三角形的性质即可解决问题.
试题解析:解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°, ∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.
在△CEB和△ADC中,∵∠E=∠ADC,∠EBC=∠DCA,BC=AC,∴△CEB≌△ADC(AAS),∴BE=DC;
(2)∵△CEB≌△ADC,∴BE=DC,CE=AD=3.5.
∵DC=CE-DE,DE=2.7cm,∴DC=3.5-2.7=0.8cm,∴BE=0.8cm.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=6,点D为AB边上的一动点(D不与A、B重合),过D作DE∥BC,交AC于点E.把△ADE沿直线DE折叠,点A落在点A′处.连接BA′,设AD=x,△ADE的边DE上的高为y.
(1)求出y与x的函数关系式;
(2)若以点A′、B、D为顶点的三角形与△ABC 相似,求x的值;
(3)当x取何值时,△A′DB是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED、EB,切点分别为点D,B,连接AD并延长交BE延长线于点C,连接OE.
(1)试判断OE与AC的关系,并说明理由;
(2)填空: ①当∠BAC=时,四边形ODEB是正方形.
②当∠BAC=30°时, 的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.
(1)求A,B两种品牌的足球的单价.
(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)、B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设点P是位于直线BC下方的抛物线上一动点,过点P作y轴的平行线交直线BC于点Q,求线段PQ的最大值;
(3)在(2)的条件下,抛物线的对称轴与直线BC交于点M,问是否存在点P,使以M、P、Q为顶点的三角形与△CBO相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5个单位,得到长方形AnBnCnDn(n>2),若ABn的长度为56,则n=_.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,连接BD,点E,F分别在AB和CD上,连接CE,AF,CE与AF分别交B于点N,M.已知∠AMD=∠BNC.
(1)若∠ECD=60°,求∠AFC的度数;
(2)若∠ECD=∠BAF,试判断∠ABD与∠BDC之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下面对话,可知懒羊羊所买的笔和笔记本的;
价格分别为( )
喜羊羊:懒羊羊,你上周买的笔和笔记本的价格是多少啊?
懒羊羊:哦,我忘了,只记得先后买了两次,第一次买了5支笔和10本笔记本共花了42元钱,第二次买了10支笔和5本笔记本共花了30元钱。
A. 0.8元/支,2.6元/本 B. 0.8元/支,3.6元/本
C. 1.2元/支,3.6元/本 D. 1.6元/支,3.2元/本
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com