精英家教网 > 初中数学 > 题目详情
如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上精英家教网的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.
(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.
分析:(1)设y=ax(x-4),把A点坐标代入即可求出答案;
(2)根据点的坐标求出PC=-m2+3m,化成顶点式即可求出线段PC的最大值;
(3)当0<m<3时,仅有OC=PC,列出方程,求出方程的解即可;当m≥3时,PC=CD-PD=m2-3m,OC=
2
m
,分为三种情况:①当OC=PC时,m2-3m=
2
m
,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.
解答:解:(1)设y=ax(x-4),
把A点坐标(3,3)代入得:
a=-1,
函数的解析式为y=-x2+4x,
答:二次函数的解析式是y=-x2+4x.

(2)解:0<m<3,PC=PD-CD,
∵D(m,0),PD⊥x轴,P在y=-x2+4x上,C在OA上,A(3,3),
∴P(m,-m2+4m),C(m,m)
∴PC=PD-CD=-m2+4m-m=-m2+3m,
=-(m-
3
2
)
2
+
9
4

∵-1<0,开口向下,
∴有最大值,
当D(
3
2
,0)时,PCmax=
9
4

答:当点P在直线OA的上方时,线段PC的最大值是
9
4


(3)当0<m<3时,仅有OC=PC,精英家教网
-m2+3m=
2
m

解得m=3-
2

P(3-
2
,1+2
2
)

当m≥3时,PC=CD-PD=m2-3m,
OC=
2
m

由勾股定理得:OP2=OD2+DP2=m2+m2(m-4)2
①当OC=PC时,m2-3m=
2
m

解得:m=3+
2
或m=0(舍去),
P(3+
2
,1-2
2
)

②当OC=OP时,(
2
m)2=m2+m2(m-4)2

解得:m1=5,m2=3,
∵m=3时,P和A重合,即P和C重合,不能组成三角形POC,
∴m=3舍去,
∴P(5,-5);
③当PC=OP时,m2(m-3)2=m2+m2(m-4)2
解得:m=4,
∴P(4,0),
答:存在,P的坐标是(3-
2
,1+2
2
)或(3+
2
,1-2
2
)或(5,-5)或(4,0).
点评:本题主要考查对用待定系数法求二次函数的解析式,等腰三角形的性质,勾股定理,二次函数的最值等知识点的理解和掌握,用的数学思想是分类讨论思想,此题是一个综合性比较强的题目,(3)小题有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(-2,0)和点C(0,-8).
(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为
6
7
,0)
6
7
,0)

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•常德)如图,已知二次函数的图象过点A(0,-3),B(
3
3
),对称轴为直线x=-
1
2
,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象与x轴交于A(2,0)、B(6,0)两点,与y轴交于点D(0,4).
(1)求该二次函数的表达式;
(2)写出该抛物线的顶点C的坐标;
(3)求四边形ACBD的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象(0≤x≤3.4),关于该函数在所给自变量的取值范围内,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案