精英家教网 > 初中数学 > 题目详情
25、如图所示,将两块三角板的直角顶点重合.
(1)写出以C为顶点的相等的角;
(2)若∠ACB=150°,求∠DCE度数;
(3)写出∠ACB与∠DCE之间所具有的数量关系;
(4)当三角板ACD绕点C旋转时,你所写出的(3)中的关系是否变化?请说明理由.
分析:(1)根据同角的余角相等作答;
(2)由图得∠DCE=90°-∠ACE,求∠ACE的度数即可;
(3)∠ACB+∠DCE=∠BCE+∠ACE+∠DCE=90°+90°=180°;
(4)由(3)可得,当三角板ACD绕点C旋转时,不变化.
解答:解:(1)根据同角的余角相等可得:∠ACE=∠BCD,
(2)∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°
∴∠DCE=90°-∠ACE=90°-60°=30°,
(3)∵∠ACB+∠DCE=∠BCE+∠ACE+∠DCE=90°+90°=180°
∴∠ACB与∠DCE互补,
(4)不变化,
证明:∵∠ACB+∠DCE=∠BCE+∠ACE+∠DCE=90°+90°=180°
∴,无论如何旋转,∠ACB与∠DCE互补.
点评:解答本题需要熟悉一副三角板各角之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源:江苏期末题 题型:解答题

把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角扳ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角扳DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q。

(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD~△CDQ。此时,AP·CQ=______。
(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为a.其中 0°<a<90°,问AP·CQ的值是否改变?说明你的理由。
(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式。(图2,图3供解题用)

查看答案和解析>>

同步练习册答案