A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{4}$ | D. | $\frac{{\sqrt{3}}}{6}$ |
分析 连接AC,AG,由OG垂直于AB,利用垂径定理得到O为AB的中点,由G的坐标确定出OG的长,在直角三角形AOG中,由AG与OG的长,利用勾股定理求出AO的长,进而确定出AB的长,由CG+GO求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,由CF垂直于AE,得到三角形ACF始终为直角三角形,点F的运动轨迹为以AC为直径的半径,如图中红线所示,当E位于点B时,CO⊥AE,此时F与O重合;当E位于D时,CA⊥AE,此时F与A重合,可得出当点E从点B出发顺时针运动到点D时,点F所经过的路径长$\widehat{AO}$,在直角三角形ACO中,利用锐角三角函数定义求出∠ACO的度数,进而确定出所对圆心角的度数,再由AC的长求出半径,利用弧长公式即可求出$\widehat{AO}$的长.
解答 解:连接AC,AG,
∵GO⊥AB,
∴O为AB的中点,即AO=BO=$\frac{1}{2}$AB,
∵G(0,1),即OG=1,
∴在Rt△AOG中,根据勾股定理得:AO=$\sqrt{A{G}^{2}-O{G}^{2}}$=$\sqrt{3}$,
∴AB=2AO=2$\sqrt{3}$,
又∵CO=CG+GO=2+1=3,
∴在Rt△AOC中,根据勾股定理得:AC=$\sqrt{A{O}^{2}{+CO}^{2}}$=2$\sqrt{3}$,
∵CF⊥AE,
∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,
当E位于点B时,CO⊥AE,此时F与O重合;当E位于D时,CA⊥AE,此时F与A重合,
∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长$\widehat{AO}$,
在Rt△ACO中,tan∠ACO=$\frac{AO}{CO}$=$\frac{\sqrt{3}}{3}$,
∴∠ACO=30°,
∴$\widehat{AO}$度数为60°,
∵直径AC=2$\sqrt{3}$,
∴$\widehat{AO}$的长为$\frac{60π×\sqrt{3}}{180}$=$\frac{\sqrt{3}}{3}$π,
则当点E从点B出发顺时针运动到点D时,点F所经过的路径长$\frac{\sqrt{3}}{3}$.
故选B.
点评 此题属于圆综合题,涉及的知识有:坐标与图形性质,勾股定理,锐角三角函数定义,弧长公式,以及圆周角定理,其中根据题意得到点E从点B出发顺时针运动到点D时,点F所经过的路径长$\widehat{AO}$是解本题的关键.
科目:初中数学 来源: 题型:选择题
A. | ($\frac{1}{2}$,0) | B. | (1,0) | C. | ($\frac{3}{2}$,0) | D. | (2,0) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com