精英家教网 > 初中数学 > 题目详情
已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是( )
A.在⊙O内
B.在⊙O上
C.在⊙O外
D.不能确定
【答案】分析:本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.
解答:解:∵OP==5,
∴根据点到圆心的距离等于半径,则知点在圆上.
故选B.
点评:能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点精英家教网P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在下图中,直线l所对应的函数关系式为y=-
15
x+5,l与y轴交于点C,O为坐标精英家教网原点.
(1)请直接写出线段OC的长;
(2)已知图中A点在x轴的正半轴上,四边形OABC为矩形,边AB与直线l相交于点D,沿直线l把△CBD折叠,点B恰好落在AC上一点E处,并且EA=1.
①试求点D的坐标;
②若⊙P的圆心在线段CD上,且⊙P既与直线AC相切,又与直线DE相交,设圆心P的横坐标为m,试求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将直角梯形ABCD置于直角坐标系中,点A和点C分别在x轴和y轴的正半轴上,点D和坐标原点O重合.已知:BC∥AD,BC=2,AD=AB=5,M(7,1),点P从点M出发,以每秒2个单位长度的速度水平向左平移,同时点Q从点A沿AB精英家教网以每秒1个单位长度的速度向点B移动,设移动时间为t秒.
(1)直接写出点Q和点P的坐标(用t的代数式表示).
(2)以点P为圆心,t个单位长度为半径画圆.
①当⊙P与直线AB第一次相切时,求出点P坐标,并判断此时⊙P与x轴的位置关系,并说明理由.
②设⊙P与直线MP交于E、F(E左F右)两点,当△QEF为直角三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=
12
x2+bx+3与x轴的正半轴交于A、B两点(A在B的左侧),且与y轴交于精英家教网点C,O为坐标原点,OB=4.
(1)直接写出点B,C的坐标及b的值;
(2)过射线CB上一点N,作MN∥OC分别交抛物线、x轴于M、T两点,设点N的横坐标为t.
①当0<t<4时,求线段MN的最大值;
②以点N为圆心,NM为半径作⊙N,当点B恰好在⊙N上时,求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

让我们借助平面直角坐标系,一起探索圆的一种奇特的性质.
如图,以平面直角坐标系xOy的原点O为圆心,2个单位长为半径作⊙O,⊙O分别交x轴的负半轴及y轴正半轴于C、D两点,已知A(1,0),B(4,0).
(1)填空:AC:BC=
1:2
1:2
,AD:BD=
1:2
1:2

(2)如果点P是圆上一个动点,那么上述结论是否仍然成立?请以点P在第二象限的情况进行探索.
解:(2)不妨假设点P在第二象限,且没点P坐标为(x,y),
根据勾股定理可得:x2+y2=
4
4
.(请你继续做下去并在最后对本小题的问题作出回答.)

查看答案和解析>>

同步练习册答案