精英家教网 > 初中数学 > 题目详情
已知:PA、PB与⊙O相切于A点、B点,OA=1,PA=,则图中阴影部分的面积是    (结果保留π).
【答案】分析:连接OP,由PA与PB都为圆O的切线,利用切线长定理得到PA=PB,且AP与OA垂直,PB与OB垂直,在直角三角形AOP中,由OA与PA的长,利用勾股定理求出OP的长,可得出OA为OP的一半,利用直角三角形中一直角边等于斜边的一半得出∠APO为30°,得出∠AOP为60°,同理得到∠BOP为60°,确定出∠AOB为120°,阴影部分的面积=三角形APO的面积+三角形BPO的面积-扇形AOB的面积,分别利用三角形的与扇形的面积公式计算,即可得到阴影部分的面积.
解答:解:连接OP,如图所示,
∵PA、PB与⊙O相切于A点、B点,
∴PA=PB,∠PAO=∠PBO=90°,
在Rt△AOP中,OA=1,PA=
根据勾股定理得:OP==2,
∴OA=OP,
∴∠APO=30°,
∴∠AOP=60°,
同理∠BOP=60°,
∴∠AOB=120°,
则S阴影=S△AOP+S△BOP-S扇形AOB=AP•OA+BP•OB-=××1+××1-=-
故答案为:-
点评:此题考查了切线的性质,切线长定理,勾股定理,以及扇形面积的计算,熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•眉山)已知:PA、PB与⊙O相切于A点、B点,OA=1,PA=
3
,则图中阴影部分的面积是
3
-
π
3
3
-
π
3
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知:PA、PB与⊙O相切于A点、B点,OA=1,PA=数学公式,则图中阴影部分的面积是________(结果保留π).

查看答案和解析>>

科目:初中数学 来源:2013年四川省广安市中考数学模拟试卷(四)(解析版) 题型:填空题

已知:PA、PB与⊙O相切于A点、B点,OA=1,PA=,则图中阴影部分的面积是    (结果保留π).

查看答案和解析>>

科目:初中数学 来源:2012年四川省眉山市中考数学试卷(解析版) 题型:填空题

已知:PA、PB与⊙O相切于A点、B点,OA=1,PA=,则图中阴影部分的面积是    (结果保留π).

查看答案和解析>>

同步练习册答案