精英家教网 > 初中数学 > 题目详情
如图1,点C是线段AB上一动点,分别以线段AC、CB为边,在线段AB的同侧作正方形ACDE和等腰直角三角形BCF,∠BCF=90°,连接AF、BD.
(1)猜想线段AF与线段BD的数量关系和位置关系(不用证明).
(2)当点C在线段AB上方时,其它条件不变,如图2,(1)中的结论是否成立?说明你的理由.
(3)在图1的条件下,探究:当点C在线段AB上运动到什么位置时,直线AF垂直平分线段BD?
分析:(1)利用△ACF≌△DCB即可得出AF=BD,进而可得出AF⊥BD;
(2)首先得出△ACF≌△DCB,再利用全等三角形的性质得出AF=BD,以及∠CDB+∠2=90°,进而得出答案;
(3)根据当AC=
2
2
AB时,直线AF垂直平分线段BD求出即可.
解答:解:(1)如图a,延长AF到DE于点M,
在△ACF和△DCB中,
AC=CD
∠ACF=∠ECD
FC=BC

∴△ACF≌△DCB(SAS),
∴AF=BD,∠CAF=∠CDE,
∵∠AFC=∠DFM,∠AFC+∠FAC=90°,
∴∠DFM+∠FDM=90°,
∴AF⊥BD.

(2)答:(1)中的结论仍成立,即AF=BD,AF⊥BD.
理由:如图1,
∵四边形ACDE为正方形,∴∠DCA=90°,AC=CD.
∵∠BCF=90°,CF=BC,∴∠DCA=∠BCF=90°,
∴∠DCA+∠DCF=∠BCF+∠DCF,
即∠ACF=∠DCB,
在△ACF和△DCB中,
DC=AC
∠ACB=∠BCD
BC=FC

∴△ACF≌△DCB(SAS),
∴AF=BD,∠CAF=∠CDB.
又∵∠1=∠2,∠CAF+∠1=90°,∴∠CDB+∠2=90°,
∴AF⊥BD.

(3)探究:当AC=
2
2
AB时,直线AF垂直平分线段BD.
如图2,连接AD,则AD=
2
AC.
∵直线AF垂直平分线段BD,∴AB=AD=
2
AC,
∴AC=
2
2
AB.
点评:此题主要考查了正方形的性质以及全等三角判定与性质等知识,熟练利用全等三角形的性质得出对应边与对应角的关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明数学成绩优秀,他平时善于总结,并把总结出的结果灵活运用到做题中是他成功的经验之一,例如,总结出“依次连接任意一个四边形各边中点所得四边形(即原四边形的中点四边形)一定是平行四边形”后,他想到曾经做过的这样一道题:如图1,点P是线段AB的中点,分别以AP和BP为边在线段AB的同侧作等边三角形APC和等边三角形BPD,连接AD和BC,他想到了四边形ABDC的中点四边形一定是菱形.于是,他又进一步探究:
如图2,若P是线段AB上任一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,设点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.请你接着往下解决三个问题:
(1)猜想四边形ABCD的中点四边形EFGH的形状,直接回答
 
,不必说明理由;
(2)当点P在线段AB的上方时,如图3,在△APB的外部作△APC和△BPD,其它条件不变,(1)中结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其它条件不变,先补全图4,再判断四边形EFGH的形状,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4.设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒
2
个单位长度的速度由点P向点O 运动,过点M作直线MN∥x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒.求S关于t的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•高新区一模)已知二次函数的图象经过A(2,0)、C(0,-12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=-2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒
2
个单位长度的速度由点P向点O运动,过点M作直线MN∥x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒.问S存在最大值吗?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案