精英家教网 > 初中数学 > 题目详情
如图,在等腰梯形ABCD中,AB∥DC,AB=10cm,CD=4cm,点P从点A出发,以1.5cm/秒的速度沿AB向终点B运动;点Q从点C出发,以1cm/秒的速度沿CD向终点D运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒:
(1)当点Q运动到点D时,PQ把梯形分成两个特殊图形是
平行四边形
平行四边形
等腰三角形
等腰三角形

(2)过点D作DE⊥AB,垂足为E,当四边形DEPQ是矩形时,求t的值;
(3)探索:是否存在这样的t值,使四边形PBCQ的面积是四边形APQD面积的2倍?若存在,求出t的值;若不存在,请说明理由.
分析:(1)求出t,求出AP、BP,根据平行四边形的判定推出即可,得出AD=DP=BC,根据等腰三角形的定义判断即可;
(2)求出AE,QD,EP,根据DQ=EP得出4-t=1.5t-3,求出即可;
(3)分别求出两个梯形的面积,根据题意得出方程,求出t的值即可.
解答:解:(1)平行四边形、等腰三角形,
理由是:∵当Q到D时,t=4÷1=4,
则AP=1.5×4=6,
∴BP=AB-AP=10-6=4,
∴BP=CD,
∵DC∥AB,
∴四边形CDPB是平行四边形,
∴DP=BC=AD,
∴△DPA是等腰三角形,
故答案为:平行四边形,等腰三角形.

(2)过C作CF⊥AB于F,
则四边形DCFE是矩形,
DC=EF=4,DE=CF,
由勾股定理得:AE2=AD2-DE2,BF2=BC2-CF2
∵AD=BC,
∴AE=BF=
1
2
×(10-4)=3,
当DEPQ是矩形时,DQ=EP,
∴4-t=1.5t-3,
解得t=
14
5
(秒);

(3)存在,
理由是:设梯形ABCD的高为h,Q不与D重合(Q与D重合不符题意),
则四边形PBCQ和APQD都是梯形,
S梯形PBCQ=
(t+10-1.5t)h
2
=
1
2
h(10-0.5t)

S梯形APQD=
(4-t+1.5t)h
2
=
1
2
h(4+0.5t)

∴10-0.5t=2(4+0.5t),
解得t=
4
3
(秒),
∴存在t,t=
4
3
秒.
点评:本题考查了等腰梯形的性质和判定,平行四边形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目比较典型,但是有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案